中考数学考前冲刺专题《相似》过关练习一、选择题用一个10倍的放大镜看一个15°的角,看到的角的度数为( )A.150° B.105° C.15° D.无法确定大小下面给出了一些关于相似的命题,其中真命题有( )(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1个 B.2个 C.3个 D.4个如图,在△ABC中,D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( )A.1B.2C.3D.4如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )A.1对B.2对C.3对D.4对如图,四边形ABCD的对角线AC,BD相交于点O,且将这个四边形分成①②③④四个三角形.若OA∶OC=OB∶OD,则下列结论中一定正确的是()A.①和②相似B.①和③相似C.①和④相似D.③和④相似如图,小明(身高忽略不计)站在C处看甲、乙两楼楼顶上的点A和点E.C,E,A三点在同一条直线上,点B,D分别在点E,A的正下方且D,B,C三点在同一条直线上.B,C两点相距20m,D,C两点相距40m,乙楼高BE为15m,甲楼高AD为( )A.40mB.20mC.15mD.30m小刚身高为1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶( )A.0.5mB.0.55mC.0.6mD.2.2m有甲、乙两个三角形木框,甲三角形木框的三边长分别为1,,,乙三角形木框的三边长分别为5,,,则甲、乙两个三角形( )
A.一定相似B.一定不相似C.不一定相似D.无法判断一个钢筋三角架的三边长分别为20cm,50cm,60cm,现在要做一个和它相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根上截两段(允许有余料)作为另两边,则不同的截法有( )A.一种B.两种C.三种D.四种或四种以上如图,小明为了测量一凉亭的高度AB(顶端A到水平地面BD的距离),在凉亭的旁边放置一个与凉亭台阶BC等高的台阶DE(DE=BC=0.5米,A,B,C三点共线),把一面镜子水平放置在平台上的点G处,测得CG=15米,然后沿直线CG后退到点E处,这时恰好在镜子里看到凉亭的顶端A,测得EG=3米,小明身高EF=1.6米,则凉亭的高度AB约为( )A.8.5米B.9米C.9.5米D.10米如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点A/,B/,C/.下列说法正确的是( )A.△A/B/C/与△ABC是位似图形,位似中心是点(1,0)B.△A/B/C/与△ABC是位似图形,位似中心是点(0,0)C.△A/B/C/与△ABC是相似图形,但不是位似图形D.△A/B/C/与△ABC不是相似图形如图,在平行四边形ABCD中,∠BAC=90°,AB=AC,过点A作边BC的垂线AF交DC的延长线于点E,点F是垂足,连接BE、DF,DF交AC于点O.则下列结论:①四边形ABEC是正方形;②CO:BE=1:3;③DE=BC;④S四边形OCEF=S△AOD,正确的个数是( )A.1 B.2 C.3 D.4二、填空题如图,已知两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3把线段AB缩小,则点A的对应点坐标是
如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是.两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面积之和为130cm2,那么较小的多边形的面积是cm2.在比例尺是1:8000的某市地图上,若一条路的长度约25cm,则它的实际长度约为;对于地图上3cm×5cm的矩形广场相应的实际占地面积为平方千米.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是 .如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为 .
参考答案答案为:C;答案为:C;答案为:C.答案为:C.答案为:B.答案为:D.答案为:A.答案为:A.答案为:B.答案为:A.答案为:B答案为:D.解析:①∵∠BAC=90°,AB=AC,∴BF=CF,∵四边形ABCD是平行四边形,∴AB∥DE,∴∠BAF=∠CEF,∵∠AFB=∠CFE,∴△ABF≌△ECF(AAS),∴AB=CE,∴四边形ABEC是平行四边形,∵∠BAC=90°,AB=AC,∴四边形ABEC是正方形,故此题结论正确;②∵OC∥AD,∴△OCF∽△OAD,∴OC:OA=CF:AD=CF:BC=1:2,∴OC:AC=1:3,∵AC=BE,∴OC:BE=1:3,故此小题结论正确;③∵AB=CD=EC,∴DE=2AB,∵AB=AC,∠BAC=90°,∴AB=BC,∴DE=2×,故此小题结论正确;④∵△OCF∽△OAD,∴,∴,∵OC:AC=1:3,∴3S△OCF=S△ACF,∵S△ACF=S△CEF,∴,∴,故此小题结论正确.答案为:(2,1)或(-2,-1)答案为:(,).40答案为:2千米,0.096;答案为:0.9m.答案为:4和2.56.解析:∵过B点的切线交AC的延长线于点D,∴AB⊥BD,∴AB===8,当∠AEP=90°时,∵AE=EC,∴EP经过圆心O,∴AP=AO=4;当∠APE=90°时,则EP∥BD,∴=,
∵DB2=CD•AD,∴CD===3.6,∴AC=10﹣3.6=6.4,∴AE=3.2,∴=,∴AP=2.56.综上AP的长为4和2.56.