空间中直线与直线之间的位置关系1.空间中两条直线的位置关系.2.平行公理及等角定理.3.异面直线所成的角1.填空题:(1)如图,AA′是长方体的一条棱,长方体中与AA′平行的棱共有条.(2)如果OA∥O′A′,OB∥O′B′,那么∠AOB和∠A′O′B′.答案:(1)3条.分别是BB′,CC′,DD′;(2)相等或互补.2.如图,已知长方体ABCD–A′B′C′D′中,AB=,AD=,AA′=2.(1)BC和A′C′所成的角是多少度?(2)AA′和BC′所成的角是多少度?2.(1)因为BC∥B′C′,所以∠B′C′A′是异面直线A′C′与BC所成的角.在Rt△A′B′C′中,A′B′=,B′C′=,所以∠B′C′A′=45°.(2)因为AA′∥BB′,所以∠B′BC′是异面直线AA′和BB′所成的角.在Rt△BB′C′中,B′C′=AD=,BB′=AA′=2,所以BC′=4,∠B′BC′=60°.因此,异面直线AA′与BC′所成的角为60°.经典习题例1“a、b为异面直线”是指:①a∩b=,且a∥b;②a面,b面,且a∩b=;③a面,b面,且∩=;
④a面,b面;⑤不存在面,使a面,b面成立.上述结论中,正确的是()A.①④⑤正确B.①③④正确C.仅②④正确D.仅①⑤正确【解析】①等价于a和b既不相交,又不平行,故a、b是异面直线;②等价于a、b不同在同一平面内,故a、b是异面直线.故选D例2如果异面直线a与b所成角为50°,P为空间一定点,则过点P与a、b所成的角都是30°的直线有且仅有条.abAa′b′OPA′B′【解析】如图所示,过定点P作a、b的平行线a′、b′,因a、b成50°角,∴a′与b′也成50°角.过P作∠A′PB′的平分线,取较小的角有∠A′PO=∠B′PO=25°.∵∠APA′>A′PO,∴过P作直线l与a′、b′成30°角的直线有2条.例3空间四边形ABCD,已知AD=1,BD=,且AD⊥BC,对角线BD=,AC=,求AC和BD所成的角。【解析】取AB、AD、DC、BD中点为E、F、G、M,连EF、FG、GM、ME、EG.∥=∥=则MGEM∵AD⊥BC∴EM⊥MG在Rt△EMG中,有在RFG中,∵EF=∴EF2+FG2=EG2∴EF⊥FG,即AC⊥BD
∴AC和BD所成角为90°.【点评】根据异面直线成角的定义,异面直线所成角的求法通常采用平移直线,转化为相交直线所成角,注意角的范围是.