2.1.2 空间中直线与直线之间的位置关系学习目标核心素养1.会判断空间两直线的位置关系.(易错点)2.理解两异面直线的定义,会求两异面直线所成的角.(难点、易错点)3.能用公理4解决一些简单的相关问题.(重点)1.通过对空间直线位置关系的学习,培养直观想象的数学素养;2.通过求异面直线所成角及公理4的运用,培养逻辑推理、直观想象的数学素养.1.空间直线的位置关系(1)异面直线:不同在任何一个平面内的两条直线.(2)异面直线的画法(衬托平面法)如图①②所示,为了表示异面直线不共面的特点,作图时,通常用一个或两个平面来衬托.① ②(3)空间两条直线的三种位置关系①从是否有公共点的角度来分:②从是否共面的角度来分:思考:分别在两个平面内的两条直线一定是异面直线吗?[提示] 不一定.可能平行、相交或异面.2.公理4及定理(1)公理4:平行于同一条直线的两条直线互相平行.符号表示:a∥b,b∥c⇒a∥c.(2)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任意一点O作直线a′∥a,b′∥b,则异面直线a与b所成的角就是直线a′与b′所成的锐角(或直角).(2)范围:0°<θ≤90°.特别地,当θ=90°时,a与b互相垂直,记作a⊥b.
1.空间任意两个角α,β,且α与β的两边对应平行,α=60°,则β为( )A.60° B.120°C.30°D.60°或120°D [α与β相等或互补,β为60°或120°,故选D.]2.不平行的两条直线的位置关系是( )A.相交B.异面C.平行D.相交或异面D [由于空间两条直线的位置关系是平行、相交、异面,则不平行的两条直线的位置关系是相交或异面.]3.如图所示,正方体ABCDA′B′C′D′中,异面直线A′B′与BC所成的角为________.异面直线AD′与BC所成的角为________.90° 45° [∵BC∥B′C′,∴∠A′B′C′即异面直线A′B′与BC所成的角,∴∠A′B′C′=90°,又BC∥AD,∴∠D′AD是异面直线AD′与BC所成的角,∴∠D′AD=45°.]空间两条直线位置关系的判定【例1】 (1)如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面直线的对数为( )A.1B.2 C.3 D.4C [还原的正方体如图所示,是异面直线的共三对,分别为AB与CD,AB与GH,EF与GH.]
(2)以下选项中,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS是异面直线的是( )A B C DC [本题容易错选A或B或D.不能严格根据异面直线的定义对两直线的位置关系作出正确判断,仅凭主观臆测和对图形的模糊认识作出选择.A,B中,PQ∥RS,D中,PQ和RS相交.故选C.]1.判断空间中两条直线位置关系的诀窍:(1)建立空间观念,全面考虑两条直线平行、相交和异面三种位置关系.特别关注异面直线.(2)重视正方体等常见几何体模型的应用,会举例说明两条直线的位置关系.2.判定两条直线是异面直线的方法:(1)证明两条直线既不平行又不相交.(2)重要结论:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.用符号语言可表示为Aα,B∈α,Bl,l⊂α,则AB与l是异面直线(如图).1.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是( )A.平行或异面B.相交或异面C.异面D.相交B [假设a与b是异面直线,而c∥a,则c显然与b不平行(否则c∥b,则有a∥b,矛盾);因此c与b可能相交或异面.]
公理4及等角定理的应用【例2】 如图所示,在正方体ABCDA′B′C′D′中,E、F、E′、F′分别是AB、BC、A′B′、B′C′的中点.求证:EE′∥FF′.[证明] 因为E、E′分别是AB、A′B′的中点,所以BE∥B′E′,且BE=B′E′.所以四边形EBB′E′是平行四边形.所以EE′∥BB′,同理可证FF′∥BB′.所以EE′∥FF′.1.证明空间两条直线平行的方法(1)平面几何法三角形中位线、平行四边形的性质等.(2)定义法用定义证明两条直线平行,要证明两个方面:一是两条直线在同一平面内;二是两条直线没有公共点.(3)公理4用公理4证明两条直线平行,只需找到直线b,使得a∥b,同时b∥c,由公理4即可得到a∥c.2.证明两个角相等的方法(1)利用等角定理.(2)利用三角形全等或相似.2.在正方体ABCDA1B1C1D1中,E,F,G分别为棱CC1,BB1,DD1的中点,试证明:∠BGC=∠FD1E.
[证明] 因为F为BB1的中点,所以BF=BB1,因为G为DD1的中点,所以D1G=DD1.又BB1DD1,所以BFD1G.所以四边形D1GBF为平行四边形.所以D1F∥GB,同理D1E∥GC.所以∠BGC与∠FD1E的对应边平行且方向相同,所以∠BGC=∠FD1E.异面直线所成的角[探究问题]1.已知直线a,b是两条异面直线,如图,如何作出这两条异面直线所成的角?[提示] 如图,在空间中任取一点O,作直线a′∥a,b′∥b,则两条相交直线a′,b′所成的锐角(或直角)θ,即两条异面直线a,b所成的角.2.异面直线a与b所成角的大小与什么有关,与点O的位置有关吗?通常点O取在什么位置?[提示] 异面直线a与b所成角的大小只与a,b的相互位置有关,与点O的位置选择无关,一般情况下为了简便,点O常选取在两条异面直线中的一条上.【例3】 如图,三棱锥ABCD中,AC⊥BD,E在棱AB上,F在棱CD上,并使AE∶EB=CF∶FD=m(m>0),设α为异面直线EF和AC所成的角,β为异面直线EF和BD所成的角,试求α+β的值.
[解] 过点F作MF∥BD,交BC于点M,连接ME,则CM∶MB=CF∶FD=m,又因为AE∶EB=CF∶FD=m,所以CM∶MB=AE∶EB,所以EM∥AC,所以α=∠MEF,β=∠MFE,所以AC与BD所成的角为∠EMF.因为AC⊥BD,∴∠EMF=90°,所以α+β=90°. 将本例变为:如图所示,点A是平面BCD外一点,AD=BC=2,E,F分别是AB,CD的中点,且EF=,求异面直线AD和BC所成的角[解] 如图,设G是AC的中点,连接EG,FG.因为E,F分别是AB,CD的中点,故EG∥BC且EG=BC=1,
FG∥AD,且FG=AD=1,即∠EGF为所求,又EF=,由勾股定理逆定理可得∠EGF=90°.两条异面直线所成的角的一般步骤(1)构造角:根据异面直线的定义,通过作平行线或平移平行线,作出异面直线夹角的相关角.(2)计算角:求角度,常利用三角形.(3)确定角:若求出的角是锐角或是直角,则它就是所求异面直线所成的角;若求出的角是钝角,则它的补角就是所求异面直线所成的角.1.判定两直线的位置关系的依据就在于两直线平行、相交、异面的定义.很多情况下,定义就是一种常用的判定方法.2.在研究异面直线所成角的大小时,通常把两条异面直线所成的角转化为两条相交直线所成的角.将空间问题向平面问题转化,这是我们学习立体几何的一条重要的思维途径.需要强调的是,两条异面直线所成角的范围为(0°,90°],解题时经常结合这一点去求异面直线所成角的大小.1.若空间两条直线a和b没有公共点,则a与b的位置关系是( )A.共面B.平行 C.异面 D.平行或异面D [若直线a和b共面,则由题意可知a∥b;若a和b不共面,则由题意可知a与b是异面直线.]2.若OA∥O′A′,OB∥O′B′,且∠AOB=130°,则∠A′O′B′为( )A.130°B.50°C.130°或50°D.不能确定C [根据定理,∠A′O′B′与∠AOB相等或互补,即∠A′O′B′=130°或∠A′O′B′=50°.]3.如图,在长方体ABCDA1B1C1D1中,判断下列直线的位置关系:
(1)直线A1B与直线D1C的位置关系是________;(2)直线A1B与直线B1C的位置关系是________;(3)直线D1D与直线D1C的位置关系是________;(4)直线AB与直线B1C的位置关系是________.(1)平行 (2)异面 (3)相交 (4)异面 [(1)在长方体ABCDA1B1C1D1中,A1D1∥BC,A1D1=BC,所以四边形A1BCD1为平行四边形,所以A1B∥D1C.(2)直线A1B与直线B1C不同在任何一个平面内.(3)直线D1D与直线D1C相交于点D1.(4)直线AB与直线B1C不同在任何一个平面内.]4.如图所示,空间四边形ABCD中,AB=CD,AB⊥CD,E、F分别为BC、AD的中点,求EF和AB所成的角.[解] 取AC的中点G,连接EG,FG,则FG∥CD,EG∥AB,所以∠FEG即为EF与AB所成的角,且FG=CD,EG=AB,又AB=CD,所以FG=EG.又由AB⊥CD得FG⊥EG,所以∠FEG=45°.故EF和AB所成的角为45°.