高中数学 2.1.2 空间直线与直线之间的位置关系学案新人教版必修2
加入VIP免费下载

高中数学 2.1.2 空间直线与直线之间的位置关系学案新人教版必修2

ID:1222622

大小:570.06 KB

页数:4页

时间:2022-08-15

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第二章课题2.1.2空间直线与直线之间的位置关系【学习目标】1.正确理解异面直线的定义;2.会判断空间两条直线的位置关系;3.掌握平行公理及空间等角定理的内容和应用;4.会求异面直线所成角的大小.【重点难点】学习重点:异面直线的概念、公理4学习难点:异面直线的概念【学习过程】一、自主预习(预习教材P44~P47,找出疑惑之处)复习1:平面的特点是______、_______、_______.复习2:平面性质(三公理)公理1___________________________________;公理2___________________________________;公理3___________________________________.二、合作探究 归纳展示探究1:异面直线及直线间的位置关系问题:平面内两条直线要么平行要么相交(重合不考虑),空间两条直线呢?观察:如图在长方体中,直线与的位置关系如何?结论:直线与既不相交,也不平行.新知1:像直线与这样不同在任何一个平面内的两条直线叫做异面直线(skewlines).试试:请在上图的长方体中,再找出3对异面直线.问题:作图时,怎样才能表示两条直线是异面的?新知2:异面直线的画法有如下几种(异面):试试:请你归纳出空间直线的位置关系.探究2:平行公理及空间等角定理 问题:平面内若两条直线都和第三条直线平行,则这两条直线互相平行,空间是否有类似规律?观察:如图2-1,在长方体中,直线∥,∥,那么直线与平行吗?图2-1新知3:公理4(平行公理)平行于同一条直线的两条直线互相平行.问题:平面上,如果一个角的两边与另一个角的两边分别平行,则这两个角相等或者互补,空间是否有类似结论?观察:在图2-1中,与,与的两边分别对应平行,这两组角的大小关系如何?新知4:定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.探究3:异面直线所成的角问题:平面内两条直线的夹角是如何定义的?想一想异面直线所成的角该怎么定义?图2-2新知5:如图2-2,已知两条异面直线,经过空间任一点作直线∥,∥,把与所成的锐角(或直角)叫做异面直线所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作.反思:思考下列问题.⑴作异面直线夹角时,夹角的大小与点的位置有关吗?点的位置怎样取才比较简便?⑵异面直线所成的角的范围是多少?⑶两条互相垂直的直线一定在同一平面上吗?⑷异面直线的夹角是通过什么样的方法作出来的?它体现了什么样的数学思想?例1如图2-3,分别为空间四边形各边的中点,若对角线,则的值为多少?(性质:平行四边形的对角线的平方和等于四条边的平方和).图2-3例2如图2-4,在正方体中,求下列异面直线所成的角.⑴和⑵和 图2-4※动手试试练正方体的棱长为,求异面直线与所成的角.三、讨论交流点拨提升师生点拨要点记载:四、学能展示课堂闯关1.为三条直线,如果,则的位置关系必定是().A.相交B.平行C.异面D.以上答案都不对2.已知是异面直线,直线平行于直线,那么与().A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线3.已知,,且是异面直线,那么直线().A.至多与中的一条相交B.至少与中的一条相交C.与都相交D.至少与中的一条平行4.正方体的十二条棱中,与直线是异面直线关系的有__________条.5.长方体中,,=1,异面直线与所成角的余弦值是______.五、学后反思1.异面直线的定义、夹角的定义及求法;2.空间直线的位置关系;3.平行公理及空间等角定理.知识拓展 异面直线的判定定理:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.如图,,则直线与直线是异面直线.【课后作业】:1.判断:(1)平行于同一直线的两条直线平行.()(2)垂直于同一直线的两条直线平行.( )(3)过直线外一点,有且只有一条直线与已知直线平行 . ()(4)与已知直线平行且距离等于定长的直线只有两条.    ()(5)若一个角的两边分别与另一个角的两边平行,那么这两个角相等()(6)若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. (   )    2.选择题(1)两条直线,b分别和异面直线c,d都相交,则直线,b的位置关系是(  ) (A)一定是异面直线(B)一定是相交直线 (C)可能是平行直线(D)可能是异面直线,也可能是相交直线(2)一条直线和两条异面直线中的一条平行,则它和另一条的位置关系是( )(A)平行(B)相交(C)异面(D)相交或异面3.正四面体A-BCD中,E、F分别是边AD、BC的中点,求异面直线EF与AC所成的角?4.已知是正方体棱,的中点,求证:.5.如图2-5,在三棱锥中,,、分别是和上的点,且,设与、所成的角分别为,求证:°.图2-5

10000+的老师在这里下载备课资料