2.1.2空间中直线与直线之间的位置关系
课标新理念一、知识与技能1、理解掌握异面直线的概念,并了解空间两直线的位置关系。2、理解异面直线所成角及掌握其求法。3、了解何为异面垂直。二、过程与方法通过研究空间直线的位置关系,体验异面垂直、异面直线所成角的探究过程。三、情感、态度与价值观通过实例,充分开拓自己的视野,发展空间观念,培养我们的空间想象力。重难点解读【重点】空间中直线与直线间的三种关系及判断。【难点】异面直线的垂直与所成角的判断、求解。
ABCD复习与准备:平面内两条直线的位置关系相交直线平行直线相交直线(有一个公共点)平行直线(无公共点)两路相交立交桥立交桥中,两条路线AB,CDaboab既不平行,又不相交NEXTBACK
六角螺母abcdef
NEXTBACK
练习1:在教室里找出几对异面直线的例子。
NEXTBACK两直线异面的判别二:两条直线不同在任何一个平面内.1.异面直线的定义:不同在任何一个平面内的两条直线叫做异面直线。两直线异面的判别一:两条直线既不相交、又不平行.注1
a与b是相交直线a与b是平行直线a与b是异面直线abM答:不一定:它们可能异面,可能相交,也可能平行。分别在两个平面内的两条直线是否一定异面?abab合作探究一NEXTBACK
2.异面直线的画法说明:画异面直线时,为了体现它们不共面的特点。常借助一个或两个平面来衬托.如图:aabaAbb(1)(3)(2)NEXTBACK
合作探究二如图是一个正方体的展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有对?FHCBEDGA3NEXTBACK
3.异面直线所成的角在平面内,两条直线相交成四个角,其中不大于90度的角称为它们的夹角,用以刻画一条直线相对另一条直线的倾斜程度,如图.在空间,如图所示,正方体ABCD-EFGH中,异面直线AB相对于HF的倾斜程度可以怎样来刻画呢?ABGFHEDCO(2)问题提出(1)复习回顾NEXTBACK
(3)解决问题异面直线所成角的定义:如图,已知两条异面直线a,b,经过空间任一点O作直线a′∥a,b′∥b则把a′与b′所成的锐角(或直角)叫做异面直线所成的角(或夹角).abb′a′O思想方法:平移转化成相交直线所成的角,即化空间图形问题为平面图形问题思考:这个角的大小与O点的位置有关吗?即O点位置不同时,这一角的大小是否改变?NEXTBACK异面直线所成的角的范围(0,90]oo如果两条异面直线a,b所成的角为直角,我们就称这两条直线互相垂直,记为a⊥b注2a″
(4)理论支持abced㈠:我们知道,在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线互相平行.在空间这一规律是否还成立呢?观察:将一张纸如图进行折叠,则各折痕及边a,b,c,d,e,…之间有何关系?a∥b∥c∥d∥e∥…公理4:在空间平行于同一条直线的两条直线互相平行.———平行线的传递性NEXTBACK推广:在空间平行于一条已知直线的所有直线都互相平行.
如果再加上条件AC=BD,那么四边形EFGH是什么图形?答案:菱形例1:如图:空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。求证:四边形EFGH是平行四边形。证明:连接BD,因为EH是△ABD的中位线,因为EH∥FG,且EH=FG,所以四边形EFGH为平行四边形。同理,FG∥BD,且FG=BD。所以EH∥BD,且EH=BD。
定理(等角定理):空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补.观察:如图所示,长方体ABCD-A1B1C1D1中,∠ADC与∠A1D1C1,∠ADC与∠A1B1C1两边分别对应平行,这两组角的大小关系如何?答:从图中可看出,∠ADC=∠A1D1C1,∠ADC+∠A1B1C1=180OD1C1B1A1CABDNEXTBACK㈡:在平面内,我们可以证明“如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补”.空间中这一结论是否仍然成立呢?
定理(等角定理):空间中如果两个角的两边分别平行,那么这两个角相等或互补。123
例2
ABGFHEDC如图,正方体ABCD-EFGH中,O为侧面ADHE的中心,求(1)BE与CG所成的角?(2)FO与BD所成的角?解:(1)如图:∵BF∥CG,∴∠EBF(或其补角)为异面直线BE与CG所成的角,又BEF中∠EBF=45,所以BE与CG所成的角是45ooNEXTBACKO连接HA、AF,依题意知O为AH中点,∴∠HFO=30o(2)连接FH,所以FO与BD所成的夹角是30o∴四边形BFHD为平行四边形,∴HF∥BD∴∠HFO(或其补角)为异面直线FO与BD所成的角∵HDEA,EAFB∴HDFB∥=∥=∥=则AH=HF=FA∴△AFH为等边△例3
NEXTBACK求异面直线所成的角的步骤是:一作(找):作(或找)平行线二证:证明所作的角为所求的异面直线所成的角。三求:在一恰当的三角形中求出角注4
(1)如上图,观察长方体ABCD-,有没有两条棱所在直线是互相垂直的异面直线?(2)如果两条平行直线中的一条与某一条直线垂直,那么,另一条直线是否也与这条直线垂直?(3)垂直于同一条直线的两条直线是否平行?有垂直不一定思考:
3相等或互补课堂练习
2、右下图长方体ABCD-EFGH中平行相交异面②BD和FH是直线①EC和BH是直线③BH和DC是直线BACDEFHG(2)与棱AB所在直线异面的棱共有条?4分别是:CG、HD、GF、HE课后思考:这个长方体的棱中共有多少对异面直线?(1)说出以下各对线段的位置关系?NEXTBACK
如图,已知长方体ABCD-EFGH中,AB=,AD=,AE=2(1)求BC和EG所成的角是多少度?(2)求AE和BG所成的角是多少度?解答:(1)∵GF∥BC∴∠EGF(或其补角)为所求.Rt△EFG中,求得∠EGF=45o(2)∵BF∥AE∴∠FBG(或其补角)为所求,Rt△BFG中,求得∠FBG=60oNEXTBACKABGFHEDC2
不同在任何一个平面内的两条直线叫做异面直线。异面直线的定义:相交直线平行直线异面直线空间两直线的位置关系6.课堂小结NEXTBACK公理4:在空间平行于同一条直线的两条直线互相平行.异面直线的求法:一作(找)二证三求空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补.等角定理:异面直线的画法用平面来衬托异面直线所成的角平移,转化为相交直线所成的角作业:课本P51页第3,6题;P54页4,6题