课时42空间点、直线、平面之间的位置关系小结一、选择题1.a,b是两条异面直线,()A.若P为不在a、b上的一点,则过P点有且只有一个平面与a,b都平行B.过直线a且垂直于直线b的平面有且只有一个C.若P为不在a、b上的一点,则过P点有且只有一条直线与a,b都平行D.若P为不在a、b上的一点,则过P点有且只有一条直线与a,b都垂直2.若三棱锥S—ABC的项点S在底面上的射影H在△ABC的内部,且是在△ABC的垂心,则()A.三条侧棱长相等B.三个侧面与底面所成的角相等C.H到△ABC三边的距离相等D.点A在平面SBC上的射影是△SBC的垂心3.a、b是异面直线,下面四个命题:①过a至少有一个平面平行于b;②过a至少有一个平面垂直于b;③至少有一条直线与a、b都垂直;④至少有一个平面分别与a、b都平行,其中正确命题的个数是()A.0B.1C.2D.34.把正方形ABCD沿对角线AC折起,当以A、B、C、D四点为顶点的正棱锥体积最大时,直线BD和平面ABC所成的角的大小为()A.90°B.60°C.45°D.30°5.在长方体ABCD—A1B1C1D1中,A1A=AB=2,若棱AB上存在一点P,使得D1P⊥PC,则棱AD的长的取值范围是()A.B.C.D.二、填空题6.已知直线m,n,平面,给出下列命题:①若;②若;③若;④若异面直线m,n互相垂直,则存在过m的平面与n垂直.其中正确的命题的题号为③④7.设是三条不同的直线,是三个不同的平面,下面有四个命题:
①②③④ENAFCBDM其中假命题的题号为①③8.在右图所示的是一个正方体的展开图,在原来的正方体中,有下列命题:
①AB与EF所在的直线平行;②AB与CD所在的直线异面;③MN与BF所在的直线成60°角;④MN与CD所在的直线互相垂直.其中正确的命题是②④9.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.10.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 ②④ (写出所有真命题的编号).三、解答题11.下列五个正方体图形中,是正方体的一条对角线,点M,N,P分别为其所在棱的中点,求能得出⊥面MNP的图形的序号(写出所有符合要求的图形序号)12.如图,正三棱柱ABC—A1B1C1的底面边长的3,侧棱AA1=D是CB延长线上一点,且BD=BC.(Ⅰ)求证:直线BC1//平面AB1D;
(Ⅱ)求二面角B1—AD—B的大小;(Ⅲ)求三棱锥C1—ABB1的体积.13.ABCDES如图,已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的一点.
(1)求证:平面EBD⊥平面SAC;
(2)设SA=4,AB=2,求点A到平面SBD的距离;
(3)当的值为多少时,二面角B-SC-D的大小为120º.
14.如图,正三角形ABC的边长为2,D、E、F分别为各边的中点将△ABC沿DE、EF、DF折叠,使A、B、C三点重合,构成三棱锥A—DEF.(I)求平面ADE与底面DEF所成二面角的余弦值(Ⅱ)设点M、N分别在AD、EF上,(λ>O,λ为变量)①当λ为何值时,MN为异面直线AD与EF的公垂线段?请证明你的结论②设异面直线MN与AE所成的角为a,异面直线MN与DF所成的角为β,试求a+β的值
【课时42答案】1.D2.D3.A4.C5.D6.③、④7.①、③8.②、④9.10.②、④11.为了得到本题答案,必须对5个图形逐一进行判别.对于给定的正方体,l位置固定,截面MNP变动,l与面MNP是否垂直,可从正、反两方面进行判断.在MN、NP、MP三条线中,若有一条不垂直l,则可断定l与面MNP不垂直;若有两条与l都垂直,则可断定l⊥面MNP;若有l的垂面∥面MNP,也可得l⊥面MNP.解法1作正方体ABCD-A1B1C1D1如附图,与题设图形对比讨论.在附图中,三个截面BA1D、EFGHKR和CB1D1都是对角线l(即AC1)的垂面.对比图①,由MN∥BAl,MP∥BD,知面MNP∥面BAlD,故得l⊥面MNP.对比图②,由MN与面CB1D1相交,而过交点且与l垂直的直线都应在面CBlDl内,所以MN不垂直于l,从而l不垂直于面MNP.对比图③,由MP与面BAlD相交,知l不垂直于MN,故l不垂直于面MNP.对比图④,由MN∥BD,MP∥BA.知面MNP∥面BA1D,故l⊥面MNP.对比图⑤,面MNP与面EFGHKR重合,故l⊥面MNP.
综合得本题的答案为①④⑤.解法2如果记正方体对角线l所在的对角截面为.各图可讨论如下:在图①中,MN,NP在平面上的射影为同一直线,且与l垂直,故l⊥面MNP.事实上,还可这样考虑:l在上底面的射影是MP的垂线,故l⊥MP;l在左侧面的射影是MN的垂线,故l⊥MN,从而l⊥面MNP.在图②中,由MP⊥面,可证明MN在平面上的射影不是l的垂线,故l不垂直于MN.从而l不垂直于面MNP.在图③中,点M在上的射影是l的中点,点P在上的射影是上底面的内点,知MP在上的射影不是l的垂线,得l不垂直于面MNP.在图④中,平面垂直平分线段MN,故l⊥MN.又l在左侧面的射影(即侧面正方形的一条对角线)与MP垂直,从而l⊥MP,故l⊥面MNP.在图⑤中,点N在平面上的射影是对角线l的中点,点M、P在平面上的射影分别是上、下底面对角线的4分点,三个射影同在一条直线上,且l与这一直线垂直.从而l⊥面MNP.至此,得①④⑤为本题答案.12.(Ⅰ)证明:CD//C1B1,又BD=BC=B1C1,∴四边形BDB1C1是平行四边形,∴BC1//DB1.又DB1平面AB1D,BC1平面AB1D,∴直线BC1//平面AB1D.(Ⅱ)解:过B作BE⊥AD于E,连结EB1,∵B1B⊥平面ABD,∴B1E⊥AD,∴∠B1EB是二面角B1—AD—B的平面角,∵BD=BC=AB,∴E是AD的中点,在Rt△B1BE中,∴∠B1EB=60°.即二面角B1—AD—B的大小为60°(Ⅲ)解法一:过A作AF⊥BC于F,∵B1B⊥平面ABC,∴平面ABC⊥平面BB1C1C,
∴AF⊥平面BB1C1C,且AF=∴即三棱锥C1—ABB1的体积为解法二:在三棱柱ABC—A1B1C1中,即三棱锥C1—ABB1的体积为ABCDESO13.(1)证明:∵SA⊥底面ABCD,BDÌ底面ABCD,∴SA⊥BD
∵ABCD是正方形,∴AC⊥BD
∴BD⊥平面SAC,又BDÌ平面EBD
∴平面EBD⊥平面SAC.(2)解:设AC∩BD=O,连结SO,则SO⊥BD
由AB=2,知BD=2
SO=
∴S△SBD=BD·SO=·2·3=6
令点A到平面SBD的距离为h,由SA⊥平面ABCD,则·S△SBD·h=·S△ABD·SA
∴6h=·2·2·4Þh=∴点A到平面SBD的距离为14.(Ⅰ)如图,取DE的中点G,连接AG、FG由题意AD=AE,△DEF为正三角形,得AG⊥DE,∴∠AGF为平面ADE与底面DEF所成二面角的平面角由题意得AG=FG=.在△AGF中,∴平面ADF与底面DEF所成二面角的余弦值为(Ⅱ)(1)λ=1时,MN为异面直线AD与EF公垂线段当λ=1,M为AD的中点,N为FF的中点,连结AN、DN,则由题意,知AN=DN=,∴MN⊥AD,同理可证MN⊥EF∴λ=1时,MN为异面直线AD与EF公垂线段.
(2)过点M作MH∥DF,交AF于点H,则∠HMN为异面直线MN与DF所成的角.由MH∥DF,得,∴∴HN//AE,∠MNH为异面直线MN与AE所成的角.∴α+β=∠MNH+∠HMN=π—∠MHN由题意得,三棱锤A—DEF是正棱锤,则点A在底面DEF上的射影为底面△DEF的中心,记为O.∵AE在底面DEF上的射影EO⊥DF,∴AE⊥DF又∵HN//AE,MH//DF,∴∠MNH=,∴