高中数学 2.1.3 空间直线与平面之间的位置关系学案新人教版必修2
加入VIP免费下载

高中数学 2.1.3 空间直线与平面之间的位置关系学案新人教版必修2

ID:1223091

大小:504.06 KB

页数:4页

时间:2022-08-15

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第二章第一节课题2.1.3空间直线与平面之间的位置关系【学习目标】1.掌握直线与平面之间的位置关系,理解直线在平面外的概念,会判断直线与平面的位置关系;2.掌握两平面之间的位置关系,会画相交平面的图形.【重点难点】学习重点:直线与平面的三种位置关系及其作用、平面与平面的位置关系及画法学习难点:直线与平面、平面与平面的位置关系的判断【学习过程】一、自主预习(预习教材P48~P50,找出疑惑之处)复习1:空间任意两条直线的位置关系有_______、_______、_______三种.复习2:异面直线是指________________________的两条直线,它们的夹角可以通过______________的方式作出,其范围是___________.复习3:平行公理:__________________________________________;空间等角定理:_______________________________________________________.二、合作探究 归纳展示探究1:空间直线与平面的位置关系问题:用铅笔表示一条直线,作业本表示一个平面,你试着比画,它们之间有几种位置关系?观察:如图3-1,直线与长方体的六个面有几种位置关系?图3-1新知1:直线与平面位置关系只有三种:⑴直线在平面内——⑵直线与平面相交——⑶直线与平面平行——其中,⑵、⑶两种情况统称为直线在平面外.反思:⑴从交点个数方面来分析,上述三种关系对应的交点有多少个?请把结果写在新知1的——符号后面⑵请你试着把上述三种关系用图形表示出来,并想想用符号语言该怎么描述.探究2:平面与平面的位置关系 问题:平面与平面的位置关系有几种?你试着拿两个作业本比画比画.观察:还是在长方体中,如图3-2,你看看它的六个面两两之间的位置关系有几种?图3-2新知2:两个平面的位置关系只有两种:⑴两个平面平行——没有公共点⑵两个平面相交——有一条公共直线试试:请你试着把平面的两种关系用图形以及符号语言表示出来.例1下列命题中正确的个数是()①若直线上有无数个点不在平面内,则∥.②若直线与平面平行,则与平面内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线与平面平行,则与平面内的任意一条直线都没有公共点.A.B.C.D.例2已知平面,直线,且∥,,,则直线与直线具有怎样的位置关系?※动手试试练1.若直线不平行于平面,且,则下列结论成立的是()A.内的所有直线与异面B.内不存在与平行的直线C.内存在唯一的直线与平行D.内的直线与都相交.练2.已知为三条不重合的直线,为三个不重合的平面:①∥,∥∥;②∥,∥∥;③∥,∥∥; ④∥,∥∥;⑤,,∥∥.其中正确的命题是()A.①⑤B.①②C.②④D.③⑤三、讨论交流点拨提升师生点拨要点记载:四、学能展示课堂闯关1.直线在平面外,则().A.∥B.与至少有一个公共点C.D.与至多有一个公共点2.已知∥,,则().A.∥B.和相交C.和异面D.与平行或异面3.四棱柱的的六个面中,平行平面有().A.1对B.1对或2对C.1对或2对或3对D.0对或1对或2对或3对4.过直线外一点与这条直线平行的直线有____条;过直线外一点与这条直线平行的平面有____个.5.若在两个平面内各有一条直线,且这两条直线互相平行,那么这两个平面的位置关系一定是______.五、学后反思1.直线与平面、平面与平面的位置关系;2.位置关系用图形语言、符号语言如何表示;3.长方体作为模型研究空间问题的重要性.知识拓展求类似确定空间的部分、平面的个数、交线的条数、交点的个数问题,都应对相应的点、线、面的位置关系进行分类讨论,做到不重不漏.分类讨论是数学中常用的重要数学思想方法,可以使问题化难为易、化繁为简.【课后作业】:1..以下命题(其中,b表示直线,a表示平面)①若∥b,bÌa,则∥a②若∥a,b∥a,则∥b③若∥b,b∥a,则∥a④若∥a,bÌa,则∥b其中正确命题的个数是()(A)0个(B)1个(C)2个(D)3个2.已知∥a,b∥a,则直线,b的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有()(A)2个(B)3个(C)4个(D)5个3.如果平面a外有两点A、B,它们到平面a的距离都是,则直线AB和平面a的位置关系一定是() (A)平行(B)相交(C)平行或相交(D)ABÌa4.已知m,n为异面直线,m∥平面a,n∥平面b,a∩b=l,则l()(A)与m,n都相交(B)与m,n中至少一条相交(C)与m,n都不相交(D)与m,n中一条相交5..下列说法正确的是()A.直线平行于平面M,则平行于M内的任意一条直线B.直线与平面M相交,则不平行于M内的任意一条直线C.直线不垂直于平面M,则不垂直于M内的任意一条直线D.直线不垂直于平面M,则过的平面不垂直于M6.平面的公共点多于2个,则()A.可能只有3个公共点B.可能有无数个公共点,但这无数个公共点有可能不在一条直线上C.一定有无数个公共点D.除选项A,B,C外还有其他可能7.已知直线及平面满足:∥,∥,则直线的位置关系如何?画图表示.8.两个不重合的平面,可以将空间划为几个部分?三个呢?试画图加以说明.

10000+的老师在这里下载备课资料