2.1.3空间中直线与平面之间的位置关系A级 基础巩固一、选择题1.经过平面外到平面距离相等的两点与这个平面平行的平面( )A.只有一个 B.至少有一个C.可能没有D.有无数个解析:这样的两点可能在平面的同侧,此时有一个平面,也可能在平面的两侧,此时没有平面.答案:C2.三棱台的一条侧棱所在直线与其对面所在的平面之间的关系是( )A.相交B.平行C.直线在平面内D.平行或直线在平面内解析:将三棱台恢复成三棱锥(延长三侧棱),则三棱台的一条侧棱所在直线与其对面相交.答案:A3.如图所示,在正方体ABCDA1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( )A.不存在B.有1条C.有2条D.有无数条解析:由题设知平面ADD1A1与平面D1EF有公共点D1,由平面基本性质中的公理知必有过该点的公共直线l,在平面ADD1A1内与l平行的直线有无数条,且它们都不在平面D1EF内,则它们都与平面D1EF平行.答案:D4.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( )A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α
解析:通过观察正方体,可知b与α相交或b⊂α或b∥α.答案:D5.平面α与平面β平行且a⊂α,下列三种说法:①a与β内的所有直线都平行;②a与β平行;③a与β内的无数条直线平行,其中正确的个数是( )A.0 B.1C.2 D.3解析:因为α∥β,a⊂α,所以a与β无公共点,所以a∥β,故②正确,所以a与β内的所有直线都没有公共点,所以a与β内的直线平行或异面,故①不正确,③正确.答案:C二、填空题6.在长方体ABCDA1B1C1D1的六个表面与六个对角面(面AA1C1C、面ABC1D1、面ADC1B1、面BB1D1D、面A1BCD1及面A1B1CD)所在的平面中,与棱AA1平行的平面共有________个.解析:如图所示,结合图形可知AA1∥平面BB1C1C,AA1∥平面DD1C1C,AA1∥平面BB1D1D.答案:37.若a与b异面,则过a与b平行的平面有________个.解析:当a与b异面时,如图,过a上任意一点M作b′∥b,则a与b′确定了唯一的平面α,且b∥α,故过a与b平行的平面有1个.答案:18.若平面α与平面β平行,a⊂α,b⊂β,则a与b的位置关系是________.解析:由两平面平行的定义可知,a与b没有公共点,所以a与b平行或异面.答案:平行或异面三、解答题9.如图所示,在正方体ABCDA1B1C1D1中,指出B1C,D1B所在直线与正方体各面所在平面的位置关系.
解:B1C所在直线与正方体各面所在平面的位置关系是:B1C在平面BB1C1C内,B1C∥平面AA1D1D,B1C与平面ABB1A1,平面CDD1C1,平面ABCD,平面A1B1C1D1都相交.D1B所在直线与正方体各面所在平面都相交.10.如图所示,ABCDA1B1C1D1是正方体,画出图中阴影部分的平面与平面ABCD的交线,并给出证明.证明:如图,过点E作EN⊥CD于点N,连接NB并延长,交EF的延长线于点M,连接AM,因为直线EN∥BF,所以B,N,E,F四点共面,因此EF与BN相交,交点为M.因为M∈EF,且M∈NB,而EF⊂平面AEF,NB⊂平面ABCD,所以M是平面ABCD与平面AEF的公共点.又因为点A是平面AEF和平面ABCD的公共点,所以AM为这两平面的交线.B级 能力提升1.已知直线a∥平面α,P∈α,那么过点P且平行于直线a的直线( )A.只有一条且不在平面α内B.有无数条且不一定在平面α内C.只有一条且在平面α内D.有无数条且一定在平面α内解析:过点P和直线a可确定唯一的平面,在这个平面内,过点P可作唯一的直线与直线a平行.又P∈α,a∥α,所以这条直线在平面α内.答案:C2.已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;④若两个平面α∩β=b,a⊂α,则a与β一定相交.
其中正确的序号是________.解析:①错,a与b也可能异面;②错,a与b也可能平行;③对,因为α∥β,所以α与β无公共点,又因为a⊂α,b⊂β,所以a与b无公共点,那么a∥b或a与b异面;④错,a与β也可能平行.答案:③3.如图所示,在正方体ABCDA1B1C1D1中,E,F分别为B1C1,A1D1的中点.求证:平面ABB1A1与平面CDFE相交.证明:在正方体ABCDA1B1C1D1中,E为B1C1的中点,所以EC与B1B不平行,则延长CE与BB1必须相交于一点H,所以H∈EC,H∈B1B.又知B1B⊂平面ABB1A1,CE⊂平面CDFE,所以H∈平面ABB1A1,H∈平面CDFE,故平面ABB1A1与平面CDFE相交.