《空间中直线与平面的位置关系》◆教材分析空间中直线与平面之间的位置关系是立体几何中最重要的位置关系,直线与平面的相交和平行是本节的重点和难点。空间中直线与平面之间的位置关系是根据交点个数来定义的,要求学生在公理1的基础上会判断直线与平面之间的位置关系。本节重点是结合图形判断空间中直线与平面之间的位置关系。◆教学目标【知识与能力目标】(1)了解空间中直线与平面的位置关系;(2)培养学生的空间想象能力。【过程与方法目标】(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;
(2)让学生利用已有的知识与经验归纳整理本节所学知识。【情感态度价值观目标】让学生感受到掌握空间直线与平面关系的必要性,提高学生的学习兴趣。【教学重难点】正确判定直线与平面的位置关系。◆课前准备◆多媒体课件。◆教学过程(一)导入新课思考(1):一支笔所在的直线与我们的课桌面所在的平面,可能有几个交点?可能有几种位置关系?思考(2):观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的六个面所在平面有几种位置关系?图1(二)推进新课、新知探究、提出问题①什么叫做直线在平面内?②什么叫做直线与平面相交?③什么叫做直线与平面平行?④直线在平面外包括哪几种情况?⑤用三种语言描述直线与平面之间的位置关系。活动:教师提示、点拨从直线与平面的交点个数考虑,对回答正确的学生及时表扬。讨论结果:①如果直线与平面有无数个公共点叫做直线在平面内。②如果直线与平面有且只有一个公共点叫做直线与平面相交。
③如果直线与平面没有公共点叫做直线与平面平行。④直线与平面相交或平行的情况统称为直线在平面外。直线在平面内aα直线与平面相交a∩α=A直线与平面平行a∥α(三)应用示例例1下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则l∥α②若直线l与平面α平行,则l与平面α内的任意一条直线都平行③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点A、0B、1C、2D、3分析:如图2,图2我们借助长方体模型,棱AA1所在直线有无数点在平面ABCD外,但棱AA1所在直线与平面ABCD相交,所以命题①不正确;A1B1所在直线平行于平面ABCD,A1B1显然不平行于BD,所以命题②不正确;A1B1∥AB,A1B1所在直线平行于平面ABCD,但直线AB平面ABCD,所以命题③不正确;l与平面α平行,则l与α无公共点,l与平面α内所有直线都没有公共点,所以命题④正确。答案:B
变式训练:已知直线a在平面α外,则( D )(A)a∥α (B)直线a与平面α至少有一个公共点(C)aÇα=A(D)直线a与平面α至多有一个公共点。例2已知一条直线与三条平行直线都相交,求证:这四条直线共面。已知直线a∥b∥c,直线l∩a=A,l∩b=B,l∩c=C。求证:l与a、b、c共面。证明:如图4,∵a∥b,图4∴a、b确定一个平面,设为α。∵l∩a=A,l∩b=B,∴A∈α,B∈α。又∵A∈l,B∈l,∴ABα,即lα。同理b、c确定一个平面β,lβ,∴平面α与β都过两相交直线b与l。∵两条相交直线确定一个平面,∴α与β重合。故l与a、b、c共面。变式训练已知aα,bα,a∩b=A,P∈b,PQ∥a,求证:PQα。证明:∵PQ∥a,∴PQ、a确定一个平面,设为β。∴P∈β,aβ又P∈b,bα,∴P∈α∵aα由推论1:过P、a有且只有一个平面。∴α、β重合。∴PQα。点评:证明两个平面重合是证明直线在平面内问题的重要方法。(四)课堂练习:若直线a不平行于平面α,且aα,则下列结论成立的是()
A.α内的所有直线与a异面B.α内不存在与a平行的直线C.α内存在唯一的直线与a平行D.α内的直线与a都相交分析:如图7若直线a不平行于平面α,且aα,则a与平面α相交。图7例如直线A′B与平面ABCD相交,直线AB、CD在平面ABCD内,直线AB与直线A′B相交,直线CD与直线A′B异面,所以A、B都不正确;平面ABCD内不存在与a平行的直线,所以应选D。答案:B(五)拓展提升过空间一点,能否作一个平面与两条异面直线都平行?解:(1)如图11,C′D′与BD是异面直线,可以过P点作一个平面与两异面直线C′D′、BD都平行。如图12,图11图12图13显然,平面PQ是符合要求的平面。(2)如图13,当点P与直线C′D′确定的平面和直线BD平行时,不存在过P点的平面与两异面直线C′D′、BD都平行。点评:判断一个命题是否正确要善于找出空间模型(长方体是常用空间模型),另外考虑问题要全面即注意发散思维。(六)课堂小结本节主要学习直线与平面的位置关系,直线与平面的位置关系有三种:①直线在平面内——有无数个公共点,②直线与平面相交——有且只有一个公共点,③直线与平面平行——没有公共点。
另外,空间想象能力的培养是本节的重点和难点。(七)作业课本习题2。1A组7、8。◆教学反思略。