高中数学人教A版(必修二)畅言教育《平面与平面之间的位置关系》◆教材分析空间中平面与平面之间的位置关系是立体几何中最重要的位置关系,平面与平面的相交和平行是本节的重点和难点。空间中平面与平面之间的位置关系是根据交点个数来定义的,要求学生在公理3的基础上会判断平面与平面之间的位置关系。本节重点是结合图形判断空间中平面与平面之间的位置关系。◆教学目标【知识与能力目标】(1)了解空间中平面与平面的位置关系。(2)培养学生的空间想象能力。【过程与方法目标】(1)学生通过观察与类比加深了对这些位置关系的理解、掌握。(2)让学生利用已有的知识与经验归纳整理本节所学知识。【情感态度价值观目标】让学生感受到掌握空间两个平面关系的必要性,提高学生的学习兴趣。用心用情服务教育
高中数学人教A版(必修二)畅言教育【教学重难点】平面与平面的相交和平行。◆课前准备◆多媒体课件。◆教学过程(一)复习1.直线与直线的位置关系:相交、平行、异面。2.直线与平面的位置关系:①直线在平面内——有无数个公共点,②直线与平面相交——有且只有一个公共点,③直线与平面平行——没有公共点。(二)导入新课思考1:拿出两本书,看作两个平面,上下、左右移动和翻转,它们之间的位置关系有几种?思考2:观察长方体(图1),围成长方体ABCD—A′B′C′D′的六个面,两两之间的位置关系有几种?图1(三)推进新课、新知探究、提出问题①什么叫做两个平面平行?②两个平面平行的画法。③回忆两个平面相交的依据。④什么叫做两个平面相交?⑤用三种语言描述平面与平面之间的位置关系。活动:先让学生思考,后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路。用心用情服务教育
高中数学人教A版(必修二)畅言教育问题①引导学生回忆直线与平面平行的定义。问题②怎样体现两个平面平行的特点。问题③两个平面有一个公共点,两平面是否相交。问题④回忆公理三问题⑤鼓励学生自我训练。讨论结果:①两个平面平行——没有公共点。②画两个互相平行的平面时,要注意使表示平面的平行四边形的对应边平行,如图2。图2图3③如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。此时,就说两平面相交,交线就是公共点的集合,这就是公理3.如图3,用符号语言表示为:P∈α且P∈βα∩β=l,且P∈l。④两个平面相交——有一条公共直线。⑤如果两个平面没有公共点,则两平面平行若α∩β=,则α∥β。如果两个平面有一条公共直线,则两平面相交若α∩β=AB,则α与β相交。两平面平行与相交的图形表示如图4图4(四)应用示例思路1例1已知平面α,β,直线a,b,且α∥β,aα,bβ,则直线a与直线b具有怎样的位置关系?活动:学生自己思考或讨论,再写出正确的答案。教师在学生中巡视,发现问题及时纠正,并及时评价。解:如图5,直线a与直线b的位置关系为平行或异面。用心用情服务教育
高中数学人教A版(必修二)畅言教育图5变式1如果三个平面两两相交,那么它们的交线有多少条?画出图形表示你的结论。解:三个平面两两相交,它们的交线有一条或三条,如图6图6变式2α、β是两个不重合的平面,在下列条件中,可判定α∥β的是()A.α、β都平行于直线l、mB.α内有三个不共线的点到β的距离相等C.l、m是α内的两条直线,且l∥β,m∥βD.l、m是两条异面直线,且l∥α、m∥α、l∥β,m∥β分析:如图7,分别是A、B、C的反例。图7答案:D点评:判断正误要结合图形,并善于发现反例,即注意发散思维。例2如图10,在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是AA1、D1C1的中点,过D、M、N三点的平面与正方体的下底面相交于直线l,用心用情服务教育
高中数学人教A版(必修二)畅言教育图10(1)画出l的位置;(2)设l∩A1B1=P,求PB1的长解:(1)平面DMN与平面AD1的交线为DM,则平面DMN与平面A1C1的交线为QN.QN即为所求作的直线l.如图10(2)设QN∩A1B1=P,∵△MA1Q≌△MAD,∴A1Q=AD=a=A1D1,∴A1是QD1的中点.又A1P∥D1N,∴A1P=D1N=C1D1=a∴PB1=A1B1-A1P=变式训练画出四面体ABCD中过E、F、G三点的截面与四面体各面的交线。解:如图11,分别连接并延长线段EF、BD,图11∵线段EF、BD共面且不平行,∴线段EF、BD相交于一点P∴连接GP交线段CD于H,分别连接EG、GH、FH即为所作交线。点评:利用公理3作两平面的交线是高考经常考查的内容,是两平面关系的重点。(五)课堂训练(1)一个平面把空间分为几部分?(2个)(2)二个平面把空间分为几部分?(3个或4个)(3)三个平面把空间分为几部分?(4个或6个或7个或8个)(六)拓展提升已知平面α∩平面β=a,bα,b∩a=A,cβ且c∥a,求证:b、c是异面直线。用心用情服务教育
高中数学人教A版(必修二)畅言教育证明:反证法:若b与c不是异面直线,则b∥c或b与c相交。(1)若b∥c.∵a∥c,∴a∥b.这与a∩b=A矛盾。(2)若b、c相交于B,则B∈β.又a∩b=A,∴A∈β∴ABβ,即bβ,这与b∩β=A矛盾∴b,c是异面直线。(七)课堂小结本节主要学习平面与平面的位置关系,平面与平面的位置关系有两种:①两个平面平行——没有公共点;②两个平面相交——有一条公共直线。另外,空间想象能力的培养是本节的重点和难点。(八)作业课本习题2.1B组1、2、3。◆教学反思略。用心用情服务教育