直线、平面平行的判定
课前自主预习
知识探究(一):直线与平面平行的背景分析思考1:根据定义,怎样判定直线与平面平行?图中直线l和平面α平行吗?lα思考2:生活中,我们注意到门扇的两边是平行的.当门扇绕着一边转动时,观察门扇转动的一边l与门框所在平面的位置关系如何?l
思考3:若将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l与桌面所在的平面具有怎样的位置关系?思考4:有一块木料如图,P为面BCEF内一点,要求过点P在平面BCEF内画一条直线和平面ABCD平行,那么应如何画线?lCABDEFP
思考5:如图,设直线b在平面α内,直线a在平面α外,猜想在什么条件下直线a与平面α平行?baαa//b
探究(二):直线与平面平行的判断定理思考1:如果直线a与平面α内的一条直线b平行,则直线a与平面α一定平行吗?abα
思考2:设直线b在平面α内,直线a在平面α外,若a//b,则直线a与直线b确定一个平面β,那么平面α与平面β的位置关系如何?此时若直线a与平面α相交,则交点在何处?baαβ
思考3:通过上述分析,我们可以得到判定直线与平面平行的一个定理,你能用文字语言表述出该定理的内容吗?定理若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.思考4:上述定理通常称为直线与平面平行的判定定理,该定理用符号语言可怎样表述?,,且.
思考5:直线与平面平行的判定定理可简述为“线线平行,则线面平行”,在实际应用中它有何理论作用?通过直线间的平行,推证直线与平面平行,即将直线与平面的平行关系(空间问题)转化为直线间的平行关系(平面问题).
思考6:设直线a,b为异面直线,经过直线a可作几个平面与直线b平行?过a,b外一点P可作几个平面与直线a,b都平行?baababpp
知识探究(三):平面与平面平行的背景分析思考1:根据定义,判定平面与平面平行的关键是什么?思考2:若一个平面内的所有直线都与另一个平面平行,那么这两个平面的位置关系怎样?若一个平面内有一条直线与另一个平面有公共点,那么这两个平面的位置关系又会怎样呢?
思考3:三角板的一条边所在直线与桌面平行,这个三角板所在平面与桌面平行吗?思考4:三角板的两条边所在直线分别与桌面平行,三角板所在平面与桌面平行吗?A
思考5:建筑师如何检验屋顶平面与水平面是否平行?
思考6:一般地,如果平面α内有一条直线平行于平面β,那么平面α与平面β一定平行吗?如果平面α内有两条直线平行于平面β,那么平面α与平面β一定平行吗?αβ
知识探究(四):平面与平面平行的判定定理思考1:对于平面α、β,你猜想在什么条件下可保证平面α与平面β平行?思考2:设a,b是平面α内的两条相交直线,且a//β,b//β.在此条件下,若α∩β=l,则直线a、b与直线l的位置关系如何?labαβ
思考3:通过上述分析,我们可以得到判定平面与平面平行的一个定理,你能用文字语言表述出该定理的内容吗?定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.
思考4:上述定理通常称为平面与平面平行的判定定理,该定理用符号语言可怎样表述?且abαβP
思考5:在直线与平面平行的判定定理中,“a∥α,b∥β”,可用什么条件替代?由此可得什么推论?推论如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.αβab
思路方法技巧
例1在空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF//平面BCD.ABCDEF
例2在长方体ABCD—A1B1C1D1中.(1)作出过直线AC且与直线BD1平行的截面,并说明理由.(2)设E,F分别是A1B和B1C的中点,求证直线EF//平面ABCD.ABCC1DA1B1D1EFMGH
例3在正方体ABCD-A′B′C′D′中.求证:平面AB′D′∥平面BC′D.BAA′B′C′D′CD
PABCDEF例4在三棱锥P-ABC中,点D、E、F分别是△PAB、△PBC、△PAC的重心,求证:平面DEF//平面ABC.MN