2.2.1直线与平面平行的判定和性质一、教学目标1.知识与技能目标进一步熟悉掌握空间直线和平面的位置关系。理解并掌握直线与平面平行的判定定理及直线与平面平行的性质定理。掌握由“线线平行”证得“线面平行”和“线面平行”证得“线线平行”的数学证明思想。进一步熟悉反证法;进一步培养学生的观察能力、空间想象力和类比、转化能力,提高学生的逻辑推理能力。2、教学方法:启发式、引导式、找错教学。多注重观察和分析,理论联系实际。3.情感态度与价值观:培养学生的认真、仔细、严谨的学习态度。建立“实践――理论――再实践”的科学研究方法。二、教学重点、难点重点:直线与平面平行的判定和性质定理。难点:用直线与平面平行的判定和性质定理证明。三、教学过程:(一)内容回顾师:在上节课我们介绍了直线与平面的位置关系,有几种?以什么作为划分的标准?生:三种,以直线与平面的公共点个数为划分标准,分别是直线与平面有两个公共点——直线在平面内(直线上所有的点都在这个平面内)直线与平面只有一个公共点——直线与平面相交直线在平面内直线与平面相交直线与平面平行直线与平面没有公共点——直线与平面平行注:我们也将直线与平面相交和平行统称为直线在平面外(二)新授内容1.如何判定直线与平面平行师:请同学回忆,我们昨天是受用了什么方法证明直线与平面平行?有直线在平面外能不能说明直线与平面平行?①生:借助定义,用反证法说明直线与平面没有公共点(证明直线在平面外不能说明直线与平面平行)②直线与平面平行的判定定理αbaPβ如果平面外一条直线与这个平面内的一条直线平行,那么这条直线和这个平面平行。已知:a,b,且a∥b求证:a∥生:反证法证明:∵a∥b∴经过a,b确定一个平面β∵a,b∴α与β是两个不同的平面∵bα,且bβ∴∩β=b假设a与α有公共点P,则P∈∩β=b,点P是a、b的公共点这与a∥b矛盾,∴a∥
定理:平面外一条直线与这个平面内的一条直线平行,那么这条直线和这个平面平行。例1:求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面。已知:如图空间四边形ABCD中,E、F分别是AB、AD的中点。求证:EF∥平面BCD证明:连结BDAE=EBEF∥BDAF=FDEF平面BCD EF∥平面BCDBD平面BCD评析:要证EF∥平面BCD,关键是在平面BCD中找到和EF平行的直线,将证明线面平行的问题转化为证明直线的平行2.直线和平面平行的性质定理:αbaβ如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。已知:a∥α,aβ,α∩β=b(如右图)求证:a∥b证明:∩β=bba aβa∥ a∩b=φa∥b bβ评析:证明用到了“同一平面的两直线没有公共点,则它们平行3.练习①能保证直线a与平面α平行的条件是( A )A.aα,bα,a∥b B.bα,a∥bC.bα,c∥α,a∥b,a∥cD.bα,A∈a,B∈a,C∈b,D∈b且AC=BD②下列命题正确的是(DF)A.平行于同一平面的两条直线平行B.若直线a∥α,则平面α内有且仅有一条直线与a平行C.若直线a∥α,则平面α内任一条直线都与a平行D.若直线a∥α,则平面α内有无数条直线与a平行E.如果a、b是两条直线,且a∥b,那么a平行于经过b的任何平面F.如果直线a、b和平面α满足a∥b,a∥α,bα,那么b∥α③若两直线a与b相交,且a平行于平面α,则b与α的位置关系是平行或相交
§2.2.2平面与平面平行的判定一、教学目标:1、知识与技能理解并掌握两平面平行的判定定理。2、过程与方法让学生通过观察实物及模型,得出两平面平行的判定。3、情感、态度与价值观进一步培养学生空间问题平面化的思想。二、教学重点、难点重点:两个平面平行的判定。难点:判定定理、例题的证明。四、教学思想(一)创设情景、引入课题引导学生观察、思考教材第57页的观察题,导入本节课所学主题。(二)研探新知1、问题:(1)平面β内有一条直线与平面平行,、β平行吗?(2)平面β内有两条直线与平面平行,、β平行吗?通过长方体模型,引导学生观察、思考、交流,得出结论。两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。符号表示:aβbβa∩b=Pβ∥αa∥αb∥α教师指出:判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。
例1、已知正方体ABCD-A1B1C1D1,求证:平面AB1D1∥平面C1BD
2.2.3直线与平面平行的性质一、教学目标:1、知识与技能(1)掌握直线与平面平行的性质定理、明确由线面平行可以推出线线平行。(2)应用定理证明一些简单问题,培养学生的逻辑思维能力。2、情感态度与价值观(1)让学生亲身经历数学研究过程,体验创造激情,享受成功喜悦,感受数学魅力。(2)培养学生良好的思维习惯,渗透事物互相转化和理论联系实际的辩证唯物主义观点。教学过程:(一)创设情景1.如果一条直线与平面平行,那么这条直线是否与这个平面内所有的直线都平行呢?2.教室日光灯管所在直线与地面平行,如何在地面做一条直线与灯管所在直线平行?(二)温故知新1.线面平行的判定方法有几种?(1)定义法:若直线与平面无公共点,则直线与平面平行.(2)面面平行定义的推论:若两平面平行,则其中一个平面内的直线与另一平面平行.(3)判定定理:证明面外直线与面内直线平行.2.直线与平面平行的判定定理是什么?用符号语言怎样表示?平面外的一条直线与平面内的一条直线平行,则该直线与此平面平行.(“线线平行,线面平行”)(三)探求新知1、探究:
如图所示,在长方体ABCD-中直线,那么(1)A1C1是否和平面AC上所有直线都平行?和这些直线有哪几种位置关系?(2)在平面ABCD内怎样找和直线A1C1平行的直线?这样的直线有几条?(3)把直线A1C1换成AD1,即AD1∥平面BCC1B1,AD1是否和平面BCC1B1所有直线均平行?在此平面内怎样找和AD1都平行的直线?(4)把直线A1C1换成A1C可否在平面ABCD内找到直线与A1C平行?2、猜想:师:可否把探究中的长方体载体变为一般情况,即:如果一条直线和一个平面平行,那么这条直线和平面内的怎样的直线平行?生:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.师:这就是直线与平面平行的性质定理,用符号怎样表示?生:3、求证:如图,,,,求证:。证明:因为,所以。又因为,所以a与b无公共点。又因为,,所以。定理:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.4、巩固:例1、如图所示的一块木料中,棱BC平行于面A'B'C'D',(1)要经过面A'B'C'D'内的一点P和棱BC
将木料锯开,应该怎样画线?(2)所画的线和平面ABCD是什么位置关系?解:(1)在平面A'C'内,过点P作直线EF,使EF∥B'C',并分别交棱A'B',C'D'于点E,F。连BE,CF,则EF,BE,CF就是应画的线。例2、已知平面外两条平行直线中的一条平行于这个平面,求证:另一个平面也平行于这个平面。布置作业教材P68习题2.25,6题
2.2.4平面与平面平行的性质一、教学目标:1、知识与技能掌握两个平面平行的性质定理及其应用2、过程与方法学生通过观察与类比,借助实物模型理解及其应用3、情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)进一步渗透等价转化的思想。二、教学重点、难点重点:平面与平面平等的性质定理难点:平面与平面平等的运用教学过程:复习:1.直线和平面平行的性质2.平面和平面平行的性质3.线线平等线面平行→面面平行1.思考:(1)两个平面平行,那么其中一个平面内的直线与另一个面具有什么关系?(2)两个平面平行,其中一个平面内的直线与另一个平面内的直线具有什么关系?(2)两个平面平行,其中一个平面内的直线与另一平面内的直线在什么条件下不平行?2.例1如图,已知平面,,满足,,,证:a∥b.证明:因为,所以,.又因为,所以a、b没有公共点,
又因为a、b同在平面内,所以a∥b.3.定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行.上述定理告诉我们,可以由平面与平面平行得出直线与直线平行.例2夹在两个平行平面间的平行线段相等,如图∥,AB∥CD,且A∈,C∈,B∈,D∈,求证:AB=CD.证明:如图,AB∥CD,AB、CD确定一个平面,