高中数学第二章点直线平面之间的位置关系2.2.1直线与平面平行的判定 教案(人教A版必修2)
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
直线与平面平行的判定民勤职专徐永锋一、教学目标:1、知识与技能(1)理解并掌握直线与平面平行的判定定理及应用;(2)进一步培养学生观察、发现、归纳的能力和空间想象能力;2、过程与方法学生通过观察图形,思考、探究直线与平面平行的判定定理.3、情感、态度与价值观(1)培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣,从而培养学生勤于思考、勤于动手的良好品质。(2)让学生了解空间与平面互相转换的数学思想.二、教学重点、难点1.教学重点:直线与平面平行的判定定理及应用.2.教学难点:从生活经验发现归纳直线与平面平行的判定定理三、教学方法:教学方法:借助实例,引导同学观察、思考、交流、讨论等.四、教与学双边活动过程设计(一)复习旧知,创设问题情境.师:直线和平面的位置关系有几种,分别是什么?生:直线和平面的位置关系有三种:aαaαaαP直线在平面内;直线和平面相交;直线和平面平行.师:用符号语言怎样表达?生:第6页(共6页) 符号表示:aαa∩α=Pa∥α师:直线和平面平行的定义怎样?生:如果一条直线和一个平面没有公共点,那么这条直线和这个平面平行.(二)提出问题.师:可不可以用这个方法判定直线与平面平行?还有没有更好的办法?(三)引导学生探索新知,发现定理.师:直线和平面平行的判定不仅可以根据定义,还有更好的方法.让我们先来观察(动手操作):【实例1】如图1,将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?(模型演示)AB【实例2】门框的对边是平行的,如图2,a∥b,当门扇绕着一边b转动时,另一边a始终与b所在的平面……?ab图1图2——启发学生观察,积极进行思考,探索、总结归纳直线与平面平行的判定定理。生:不会有公共点,即a平行于b所在的平面.第6页(共6页) 猜想:若平面α内有直线b与平面α外直线a平行,那么直线a与平面α的位置关系如何?是否可以保证直线a与平面α平行?探究:平面α外有直线a平行于平面α内直线b(1)这两条直线共面吗?(2)直线a与平面α相交吗?由此我们得到:直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.符号表示为:aα,bα,a∥ba∥α师:从上面的判定定理我们可以得到证明一条直线和一个平面平行的方法,是怎样的?——引导学生深化理解,形成知识方法。生:只要在这个平面内找出一条直线和已知直线平行,就可断定这条已知直线必和这个平面平行,即:线线平行线面平行.作用:判定或证明线面平行。关键:在平面内找(或作)出一条直线与面外的直线平行。思想:空间问题转化为平面问题知识及时反馈:在长方体中,指定一条棱所在直线,找出与该棱所在直线平行的平面。(模型演示)(四)应用定理,巩固与提高第6页(共6页) ABCDEF1、学习例1:空间四边形相邻两边中点的连线,平行于经过另外两边的平面.已知:空间四边形ABCD中,E、F分别是AB、AD的中点.求证:EF∥平面BCD.分析:根据直线与平面平行的判定定理,要证明EF∥平面BCD,只要在平面BCD内找一直线与EF平行即可,很明显原平面BCD内的直线BD∥EF.生:证明:连结BD.性,这三个条件ABCDEF是证明直线和平面平行的条件,缺一不可.例题变式训练:空间四边形ABCD中,E、F分别是AB、AD上的点,且AE=AB,AF=AD求证:EF∥平面BCD.2、A组基础练习:判断下列命题是否正确:(1)直线和一个平面平行,就和这个平面内任何直线都平行;()(2)平面外有两条平行直线,一条和平面平行,则另一条也和这个平面平行;()第6页(共6页) (3)如果两直线平行,其一在平面内,则另一直线平行于此平面;()ABCDPM(4)如果两直线a//b,则a平行于经过b的任何平面。()B组提高练习:(1)如图,已知点P是平行四边形ABCD所在平面外一点,M为PD的中点,求证:PB∥平面MAC.分析:连结BD交AC于O,连结OM,则PB∥OMABCDFEA1B1C1D1(2)如图,正方体ABCD-A1B1C1D1中,E、F分别是棱BC、C1D1上的中点.求证:EF∥平面BB1D1D.(3)如图,正三棱柱ABC-A1B1C1,在AC上找一点D,ABCC1B1A1D使AB1与∥平面DBC1,并说明理由.分析:取AC的中点为D,则AB1与∥平面DBC1.ABCVPC组拓展练习:一木块如图所示,点P在平面VAC内,过点P第6页(共6页) 将木块锯开,使截面平行于直线VB和AC,应该怎样画线?(模型演示)(五)新知识总结,形成知识方法体系师:通过这节课我们的学习,你觉得掌握了哪些知识和方法?有什么体会?生:掌握了直线和平面平行的判定方法.学习直线和平面平行的判定定理,关键是要会把线面平行转化为线线平行来解题.(六)课外作业布置以下两题中任选一题或两题做作业:(1)P62习题2.2A组第3题;ABCDEFMN(2)如右图,两个正方形ABCD与ABEF所在平面交于AB,M∈AC,N∈FB,FN=AM,求证:MN∥平面BCE.五、板书设计2.2.1直线与平面平行的判定线线平行线面平行aα,bα,a∥ba∥α1、定义法2、判定定理电脑演示屏幕六、课后反思:第6页(共6页)

10000+的老师在这里下载备课资料