高中数学人教A版必修2第二章 点、直线、平面之间的位置关系 2.2.1 直线与平面平行的判定 导学案
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
§2.2.1直线与平面平行的判定学习目标1.通过生活中的实际情况,建立几何模型,了解直线与平面平行的背景;2.理解和掌握直线与平面平行的判定定理,并会用其证明线面平行.学习过程一、课前准备(预习教材P54~P55,找出疑惑之处)复习:直线与平面的位置关系有______________,_______________,_________________.讨论:直线和平面的位置关系中,平行是最重要的关系之一,那么如何判定直线和平面是平行的呢?根据定义好判断吗?二、新课导学※探索新知探究1:直线与平面平行的背景分析实例1:如图5-1,一面墙上有一扇门,门扇的两边是平行的.当门扇绕着墙上的一边转动时,观察门扇转动的一边与墙所在的平面位置关系如何?图5-1实例2:如图5-2,将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线与桌面所在的平面具有怎样的位置关系?图5-2结论:上述两个问题中的直线与对应平面都是平行的.探究2:直线与平面平行的判定定理问题:探究两个实例中的直线为什么会和对应的平面平行呢?你能猜想出什么结论吗?能作图把这一结论表示出来吗?新知:直线与平面平行的判定定理定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.如图5-3所示,∥. 图5-3反思:思考下列问题⑴用符号语言如何表示上述定理;⑵上述定理的实质是什么?它体现了什么数学思想?⑶如果要证明这个定理,该如何证明呢?※典型例题例1有一块木料如图5-4所示,为平面内一点,要求过点在平面内作一条直线与平面平行,应该如何画线?图5-4例2如图5-5,空间四边形中,分别是的中点,求证:∥平面.图5-5※动手试试练1.正方形与正方形交于,和分别为和上的点,且,如图5-6 所示.求证:∥平面.图5-6练2.已知,分别为的中点,沿将折起,使到的位置,设是的中点,求证:∥平面.三、总结提升※学习小结1.直线与平面平行判定定理及其应用,其核心是线线平行线面平行;2.转化思想的运用:空间问题转化为平面问题.※知识拓展判定直线与平面平行通常有三种方法:⑴利用定义:证明直线与平面没有公共点.但直接证明是困难的,往往借助于反正法来证明.⑵利用判定定理,其关键是证明线线平行.证明线线平行可利用平行公理、中位线、比例线段等等.⑶利用平面与平面平行的性质.(后面将会学习到)学习评价 ※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.若直线与平面平行,则这条直线与这个平面内的().A.一条直线不相交B.两条直线不相交C.任意一条直线都不相交D.无数条直线不相交2.下列结论正确的是().A.平行于同一平面的两直线平行B.直线与平面不相交,则∥平面C.是平面外两点,是平面内两点,若,则∥平面D.同时与两条异面直线平行的平面有无数个3.如果、、是不在同一平面内的三条线段,则经过它们中点的平面和直线的位置关系是().A.平行B.相交C.在此平面内D.平行或相交4.在正方体的六个面和六个对角面中,与棱平行的面有________个.5.若直线相交,且∥,则与平面的位置关系是_____________.课后作业1.如图5-7,在正方体中,为的中点,判断与平面的位置关系,并说明理由.图5-72.如图5-8,在空间四边形中,、分别是和的重心.求证:∥平面.图5-8

10000+的老师在这里下载备课资料