课时达标检测38 直线、平面平行的判定与性质
加入VIP免费下载

课时达标检测38 直线、平面平行的判定与性质

ID:1223852

大小:286.5 KB

页数:6页

时间:2022-08-15

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
课时达标检测(三十八)直线、平面平行的判定与性质[练基础小题——强化运算能力]1.设α,β是两个不同的平面,m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分不必要条件是(  )A.m∥l1且n∥l2B.m∥β且n∥l2C.m∥β且n∥βD.m∥β且l1∥α解析:选A 由m∥l1,m⊂α,l1⊂β,得l1∥α,同理l2∥α,又l1,l2相交,所以α∥β,反之不成立,所以m∥l1且n∥l2是α∥β的一个充分不必要条件.2.设m,n是不同的直线,α,β是不同的平面,且m,n⊂α,则“α∥β”是“m∥β且n∥β”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 若m,n⊂α,α∥β,则m∥β且n∥β;反之若m,n⊂α,m∥β且n∥β,则α与β相交或平行,即“α∥β”是“m∥β且n∥β”的充分不必要条件.3.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是(  )A.①③B.②③C.①④D.②④解析:选C 对于图形①,平面MNP与AB所在的对角面平行,即可得到AB∥平面MNP;对于图形④,AB∥PN,即可得到AB∥平面MNP;图形②③无论用定义还是判定定理都无法证明线面平行.4.已知正方体ABCDA1B1C1D1,下列结论中,正确的结论是________(只填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.解析:连接AD1,BC1,AB1,B1D1,C1D1,BD,因为AB綊C1D1,所以四边形AD1C1B为平行四边形,故AD1∥BC1,从而①正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC1=D,故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面,故③错误;因AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,故AD1∥平面BDC1,故④正确.答案:①②④5.如图所示,在四面体ABCD中,M,N分别是△ACD,△BCD6/6 的重心,则四面体的四个面所在平面中与MN平行的是________.解析:连接AM并延长,交CD于E,连接BN,并延长交CD于F,由重心性质可知,E,F重合为一点,且该点为CD的中点E,连接MN,由==,得MN∥AB.因此,MN∥平面ABC且MN∥平面ABD.答案:平面ABC、平面ABD[练常考题点——检验高考能力]一、选择题1.下列命题中,错误的是(  )A.一条直线与两个平行平面中的一个相交,则必与另一个平面相交B.平行于同一平面的两个不同平面平行C.如果平面α不垂直平面β,那么平面α内一定不存在直线垂直于平面βD.若直线l不平行平面α,则在平面α内不存在与l平行的直线解析:选D A中,如果假定直线与另一个平面不相交,则有两种情形:在平面内或与平面平行,不管哪种情形都得出这条直线与第一个平面不能相交,出现矛盾,故A正确;B是两个平面平行的一种判定定理,B正确;C中,如果平面α内有一条直线垂直于平面β,则平面α垂直于平面β(这是面面垂直的判定定理),故C正确;D是错误的,事实上,直线l不平行平面α,可能有l⊂α,则α内有无数条直线与l平行.2.已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是(  )A.0B.1C.2D.3解析:选A 对于①,若a∥b,b⊂α,则应有a∥α或a⊂α,所以①是假命题;对于②,若a∥b,a∥α,则应有b∥α或b⊂α,因此②是假命题;对于③,若a∥α,b∥α,则应有a∥b或a与b相交或a与b异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.3.已知直线a,b异面,给出以下命题:①一定存在平行于a的平面α使b⊥α;②一定存在平行于a的平面α使b∥α;③一定存在平行于a的平面α使b⊂α;④一定存在无数个平行于a的平面α与b交于一定点.则其中正确的是(  )6/6 A.①④B.②③C.①②③D.②③④解析:选D 对于①,若存在平面α使得b⊥α,则有b⊥a,而直线a,b未必垂直,因此①不正确;对于②,注意到过直线a,b外一点M分别引直线a,b的平行线a1,b1,显然由直线a1,b1可确定平面α,此时平面α与直线a,b均平行,因此②正确;对于③,注意到过直线b上的一点B作直线a2与直线a平行,显然由直线b与a2可确定平面α,此时平面α与直线a平行,且b⊂α,因此③正确;对于④,在直线b上取一定点N,过点N作直线c与直线a平行,经过直线c的平面(除由直线a与c所确定的平面及直线c与b所确定的平面之外)均与直线a平行,且与直线b相交于一定点N,而N在b上的位置任意,因此④正确.综上所述,②③④正确.4.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列三个命题:①若m∥l,且m⊥α,则l⊥α;②若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;③若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是(  )A.0B.1C.2D.3解析:选C ①正确;②中三条直线也可能相交于一点,故错误;③正确,所以正确的命题有2个.5.(2017·襄阳模拟)如图,在正方体ABCDA1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是(  )A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行解析:选D 如图所示,连接AC,C1D,BD,则MN∥BD,而C1C⊥BD,故C1C⊥MN,故A、C正确,D错误,又因为AC⊥BD,所以MN⊥AC,B正确.6.如图,矩形ABCD中,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻转过程中,正确的命题是(  )①|BM|是定值;②点M在圆上运动;③一定存在某个位置,使DE⊥A1C;6/6 ④一定存在某个位置,使MB∥平面A1DE.A.①②③B.①②④C.②③④D.①③④解析:选B 取DC中点N,连接MN,NB,则MN∥A1D,NB∥DE,∴平面MNB∥平面A1DE,∵MB⊂平面MNB,∴MB∥平面A1DE,④正确;∠A1DE=∠MNB,MN=A1D=定值,NB=DE=定值,根据余弦定理得,MB2=MN2+NB2-2MN·NB·cos∠MNB,所以MB是定值.①正确;B是定点,所以M是在以B为圆心,MB为半径的圆上,②正确;当矩形ABCD满足AC⊥DE时存在,其他情况不存在,③不正确.所以①②④正确.二、填空题7.过三棱柱ABCA1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析:过三棱柱ABCA1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共有6条.答案:68.正方体ABCDA1B1C1D1的棱长为1cm,过AC作平行于体对角线BD1的截面,则截面面积为________cm2.解析:如图所示,截面ACE∥BD1,平面BDD1∩平面ACE=EF,其中F为AC与BD的交点,∴E为DD1的中点,∴S△ACE=××=(cm2).答案:9.α,β,γ是三个平面,a,b是两条直线,有下列三个条件:①α∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(填上你认为正确的所有序号).解析:①α∥γ,α∩β=a,β∩γ=b⇒a∥b(面面平行的性质).②如图所示,在正方体中,α∩β=a,b⊂γ,a∥γ,b∥β,而a,b异面,故②错.③b∥β,b⊂γ,β∩γ=a⇒a∥b(线面平行的性质).答案:①③10.空间四边形ABCD的两条对棱AC、BD6/6 的长分别为5和4,则平行于两条对棱的截面四边形EFGH在平移过程中,周长的取值范围是________.解析:设==k(0

10000+的老师在这里下载备课资料