《直线、平面平行的判定与性质》测试题(卷)
加入VIP免费下载

《直线、平面平行的判定与性质》测试题(卷)

ID:1223887

大小:367.5 KB

页数:10页

时间:2022-08-15

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
WORD资料下载可编辑2.2直线、平面平行的判定及性质一、选择题(共60分)1、若两个平面互相平行,则分别在这两个平行平面内的直线(   )A.平行  B.异面   C.相交    D.平行或异面2、下列结论中,正确的有(   )①若aα,则a∥α②a∥平面α,bα则a∥b③平面α∥平面β,aα,bβ,则a∥b④平面α∥β,点P∈α,a∥β,且P∈a,则aαA.1个   B.2个    C.3个   D.4个3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是(   )A.平行    B.相交     C.在内   D.不能确定4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是(   )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在5、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是(   )A.b∥α    B.bαC.b与α相交  D.以上都有可能6、下列命题中正确的命题的个数为(   )①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线bα,则a∥α;④若直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.A.1     B.2      C.3  D.47、下列命题正确的个数是(   )(1)若直线l上有无数个点不在α内,则l∥α(2)若直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥αA.0个  B.1个    C.2个    D.3个8、已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:技术资料专业分享 WORD资料下载可编辑①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若mα,nβ,m∥n,则α∥β;④若m、n是异面直线,mα,m∥β,nβ,n∥α,则α∥β.其中真命题是(   )A.①和②   B.①和③    C.③和④   D.①和④9、长方体ABCD-A1B1C1D1中,E为AA1中点,F为BB1中点,与EF平行的长方体的面有(  )A.1个      B.2个     C.3个     D.4个10、对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,M,使得l∥α,l∥β,M∥α,M∥β.其中可以判断两个平面α与β平行的条件有(  )A.1个     B.2个      C.3个    D.4个11、设m,n为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是(  )A.若m⊂α,n⊂α,且m∥β,n∥β,则α∥βB.若m∥α,m∥n,则n∥αC.若m∥α,n∥α,则m∥n12、已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若α⊥β,m⊥β,则m∥αD.若m∥n,m⊥α,n⊥β,则α∥β二、填空题(共20分)13.在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是棱A1B1、B1C1的中点,P是棱AD上一点,AP=,过P、M、N的平面与棱CD交于Q,则PQ=_________.14.若直线a和b都与平面α平行,则a和b的位置关系是__________.15.过长方体ABCD—A1B1C1D1的任意两条棱的中点作直线,其中能够与平面ACC1A1平行的直线有    ()条.16.已知平面α∥平面β,P是α、β外一点,过点P的直线m与α、β分别交于A、C,过点P的直线n与α、β分别交于B、D且PA=6,AC=9,PD=8,则BD的长为    .三、解答题(17(10分)、18、19、20、21、22(12分))17.(10分)如图,已知为平行四边形所在平面外一点,为的中点,求证:平面.技术资料专业分享 WORD资料下载可编辑18.(12分)如图所示,已知P、Q是单位正方体ABCD—A1B1C1D1的面A1B1BA和面ABCD的中心.求证:PQ∥平面BCC1B1.19.(12分)如图,已知点是平行四边形所在平面外的一点,,分别是,上的点且,求证:平面.技术资料专业分享 WORD资料下载可编辑20.(12分)如下图,F,H分别是正方体ABCD-A1B1C1D1的棱CC1,AA1的中点,求证:平面BDF∥平面B1D1H.21.(12分)如图,在直四棱柱ABCD—A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=2CD,E,E1,F分别是棱AD,AA1,AB的中点.求证:直线EE1∥平面FCC1.22.(12分)如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD;(2)若MN=BC=4,PA=4,求异面直线PA与MN所成的角的大小.技术资料专业分享 WORD资料下载可编辑2.2直线、平面平行的判定及其性质(答案)一、选择题1、若两个平面互相平行,则分别在这两个平行平面内的直线(  D )A.平行 B.异面    C.相交    D.平行或异面2、下列结论中,正确的有( A)①若aα,则a∥α②a∥平面α,bα则a∥b③平面α∥平面β,aα,bβ,则a∥b④平面α∥β,点P∈α,a∥β,且P∈a,则aαA.1个 B.2个    C.3个     D.4个解析:若aα,则a∥α或a与α相交,由此知①不正确若a∥平面α,bα,则a与b异面或a∥b,∴②不正确若平面α∥β,aα,bβ,则a∥b或a与b异面,∴③不正确由平面α∥β,点P∈α知过点P而平行平β的直线a必在平面α内,是正确的.证明如下:假设aα,过直线a作一面γ,使γ与平面α相交,则γ与平面β必相交.设γ∩α=b,γ∩β=c,则点P∈b.由面面平行性质知b∥c;由线面平行性质知a∥c,则a∥b,这与a∩b=P矛盾,∴aα.故④正确.3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是(  A )A.平行   B.相交     C.在内     D.不能确定参考答案与解析:解析:在平面ABC内.∵AE:EB=CF:FB=1:3,∴AC∥EF.可以证明AC平面DEF.若AC平面DEF,则AD平面DEF,BC平面DEF.由此可知ABCD为平面图形,这与ABCD是空间四边形矛盾,故AC平面DEF.∵AC∥EF,EF平面DEF.∴AC∥平面DEF.主要考察知识点:空间直线和平面4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是(  D )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在技术资料专业分享 WORD资料下载可编辑参考答案与解析:解析:如当A与a确定的平面与b平行时,过A作与a,b都平行的平面不存在.答案:D主要考察知识点:空间直线和平面5、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是(   )A.b∥α     B.bαC.b与α相交     D.以上都有可能参考答案与解析:思路解析:a与b垂直,a与b的关系可以平行、相交、异面,a与α平行,所以b与α的位置可以平行、相交、或在α内,这三种位置关系都有可能.答案:D主要考察知识点:空间直线和平面6、下列命题中正确的命题的个数为(  A )①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线bα,则a∥α;④若直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.A.1     B.2     C.3      D.4参考答案与解析:解析:对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内(若改为l与α内任何直线都平行,则必有l∥α),∴①是假命题.对于②,∵直线a在平面α外,包括两种情况a∥α和a与α相交,∴a与α不一定平行,∴②为假命题.对于③,∵a∥b,bα,只能说明a与b无公共点,但a可能在平面α内,∴a不一定平行于平面α.∴③也是假命题.对于④,∵a∥b,bα.那么aα,或a∥α.∴a可以与平面α内的无数条直线平行.∴④是真命题.综上,真命题的个数为1.答案:A主要考察知识点:空间直线和平面7、下列命题正确的个数是(   A)(1)若直线l上有无数个点不在α内,则l∥α(2)若直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥αA.0个  B.1个    C.2个     D.3个参考答案与解析:解析:由直线和平面平行的判定定理知,没有正确命题.答案:A主要考察知识点:空间直线和平面8、已知m、n是两条不重合的直线,α、β、γ技术资料专业分享 WORD资料下载可编辑是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若mα,nβ,m∥n,则α∥β;④若m、n是异面直线,mα,m∥β,nβ,n∥α,则α∥β.其中真命题是( D )A.①和②   B.①和③     C.③和④      D.①和④参考答案与解析:解析:利用平面平行判定定理知①④正确.②α与β相交且均与γ垂直的情况也成立,③中α与β相交时,也能满足前提条件答案:D主要考察知识点:空间直线和平面9、长方体ABCD-A1B1C1D1中,E为AA1中点,F为BB1中点,与EF平行的长方体的面有( C )A.1个       B.2个     C.3个      D.4个参考答案与解析:解析:面A1C1,面DC1,面AC共3个.答案:C主要考察知识点:空间直线和平面10、对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,M,使得l∥α,l∥β,M∥α,M∥β.其中可以判断两个平面α与β平行的条件有( B )A.1个       B.2个     C.3个       D.4个参考答案与解析:解析:取正方体相邻三个面为α、β、γ,易知α⊥γ,β⊥γ,但是α与β相交,不平行,故排除①,若α与β相交,如图所示,可在α内找到A、B、C三个点到平面β的距离相等,所以排除③.容易证明②④都是正确的.答案:B主要考察知识点:空间直线和平面11.D12.D二、填空题技术资料专业分享 WORD资料下载可编辑13、在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是棱A1B1、B1C1的中点,P是棱AD上一点,AP=,过P、M、N的平面与棱CD交于Q,则PQ=_________.参考答案与解析:解析:由线面平行的性质定理知MN∥PQ(∵MN∥平面AC,PQ=平面PMN∩平面AC,∴MN∥PQ).易知DP=DQ=.故.答案:主要考察知识点:空间直线和平面14、若直线a和b都与平面α平行,则a和b的位置关系是__________.参考答案与解析:相交或平行或异面主要考察知识点:空间直线和平面15、616、三、解答题17.答案:证明:连接、交点为,连接,则为的中位线,.平面,平面,平面.18.答案:19.答案:证明:连结并延长交于.连结,,,又由已知,.由平面几何知识可得,技术资料专业分享 WORD资料下载可编辑又,平面,平面.20.如下图,F,H分别是正方体ABCD-A1B1C1D1的棱CC1,AA1的中点,求证:平面BDF∥平面B1D1H.证明:取DD1,中点E连AE、EF.∵E、F为DD1、CC1中点,∴EF∥CD.,EF=CD∴EF∥AB,EF=AB∴四边形EFBA为平行四边形.∴AE∥BF.又∵E、H分别为D1D、A1A中点,∴D1E∥HA,D1E=HA∴四边形HADD1为平行四边形.∴HD1∥AE∴HD1∥BF由正方体的性质易知B1D1∥BD,且已证BF∥D1H.∵B1D1⊄平面BDF,BD⊂平面BDF,∴B1D1∥平面BDF.连接HB,D1F,∵HD1⊄平面BDF,BF⊂平面BDF,∴HD1∥平面BDF.又∵B1D1∩HD1=D1,∴平面BDF∥平面B1D1H.21,答案:[证明] 因为F为AB的中点,CD=2,AB=4,AB∥CD,所以CD∥AF,CD=AF因此四边形AFCD为平行四边形,所以AD∥FC.又CC1∥DD1,FC∩CC1=C,FC⊂平面FCC1,CC1⊂平面FCC1,AD∩DD1=D,AD⊂平面ADD1A1,DD1⊂平面ADD1A1,所以平面ADD1A1∥平面FCC1.又EE1⊂平面ADD1A1,EE1⊄平面FCC1,所以EE1∥平面FCC1.22.答案:(1)取PD的中点H,连接AH,NH,∵N是PC的中点,∴NH=DC.由M是AB的中点,且DC∥AB,技术资料专业分享 WORD资料下载可编辑∴NH∥AM,NH=AM即四边形AMNH为平行四边形.∴MN∥AH,由MN⊄平面PAD,AH⊂平面PAD,∴MN∥平面PAD.(2)连接AC并取其中点O,连接OM、ON,∴OM∥BC,ON∥PA.,OM=BC,ON=PA.∴∠ONM就是异面直线PA与MN所成的角,由MN=BC=4,PA=4,得OM=2,ON=2.∴MO2+ON2=MN2,∴∠ONM=30°,即异面直线PA与MN成30°的角.w.w.w.k.s.5.u.c.o.mwww.ks5u.com技术资料专业分享

10000+的老师在这里下载备课资料