【教学设计】《平面与平面平行的判定》(人教版)
加入VIP免费下载

【教学设计】《平面与平面平行的判定》(人教版)

ID:1224050

大小:47.44 KB

页数:5页

时间:2022-08-15

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
200*纭m■■过普■矜申谏程标准实#敦科书呼争曲学谶FVRMVfftIF复中心《平面与平面平行的判定》♦教材分析空间中平面与平面之间的位置关系中,平行是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范•空间中平面与平面平行的判定定理给出了由线面平行转化为面面平行的方法,所以本节在立体几何中占有重要地位•本节重点是平面与平面平行的判定定理及其性质定理的应用。♦教学目标・L【知识与能力目标】(1)理解并掌握平面与平面平行的判定定理;(2)会运用两个平面平行的判定定理解决问题;(3)进一步培养学生观察、发现的能力和空间想象能力。【过程与方法目标】学生通过观察与类比,借助实物模型理解及其应用。 【情感态度价值观目标】(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)进一步渗透等价转化的思想。【教学重难点】平面与平面平行的判定。,♦课前准备”多媒体课件。'♦教学过程:L।(一)复习回顾1•如何判定直线和平面是否平行?2•平面与平面有几种位置关系?(二)推进新课、新知探究、提出问题1、问题:如何证明两平面平行?结论:判定两个平面平行的关键在于判定它们没有公共点。若一个平面内的所有直线都和另一个平面平行,那么这两个平面平行。判定两平面平行是否要证明一个平面内的所有直线都和另一个平面平行?这个方法可行吗?2、观察:(7)三角板ABC的一条边BC与桌面平行,如图①三角板ABC所在的平面与桌面a平行吗?(不一定)(2)当三角板ABC的两条边8C48都平行桌面a时,如图②三角板ABC所在的平面是否平行于桌面a?(一定)3、探究:(1)平面1内有一条直线与平面:•平行,://1吗?(2)平面〔内有两条平行直线与平面:•平行,:■,〔平行吗?(3)平面3内有两条相交直线与平面〔平行,这两个平面平行吗?活动:结合长方体模型思考以上问题,学生互动交流得出结论,教师再结合图形加以说 明。4、两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。以上是两个平面平行的文字语言,另外面面平行的判定定理的符号语言为:若aua,bua,anb=A且a//aB,贝Uall3.图形语言为:如图5,简述为:线面平行,则面面平行(三)应用示例思路1例1已知正方体ABCD-AiBCiDi,如图9,求证:平面ABQi/平面BDG.活动:学生自己思考或讨论,再写出正确的答案•教师在学生中巡视学生的解答,发现问题及时纠正,并及时评价证明:•/ABCD-AiBCDi为正方体,DiCi/AiBi,DiCi=AiBi.又•・・AB//AiBi,AB=AiBi,,DiCi//AB,DiCi=AB.•四边形ABCiDi为平行四边形• •-ADi//BCi.又ADi平面ABiDi,BCi二平面ABiDi,•BCi//平面ABiDi.同理,BD//平面ABiDi.又BDnBCi=B,・平面ABiDi//平面BDCi.提升总结:(i)应用定理时,“内”、“交”、“平行”三个条件缺一不可。(2)要证明平面与平面平行,只要在这个平面内找出两条相交直线与已知平面平行,把证明面面问题转化为证明线面问题即可。(四)课堂训练1'平面和平面平行的条件可以是((A)a内有无穷多条直线都与已知平面平行。(B)直线a//a,a//B,且直线a不在a内,也不在B内。(C)直线a二:±,直线b二卜,且a/B,b〃a。(D)a内的任何一条直线都与B平行。2、如图10,在正方体ABCD-EFGH中,M、N、P、Q、R分别是EH、EF、BC、CD、AD的中点,求证:平面MNA//平面PQG。图10证明:*/M、N、P、Q、R分别是EH、EF、BC、CD、AD的中点,•••MN//HF,PQ//BD.TBD//HF,•••MN//PQ;•/PR//GH,PR=GH;MH//AR,MH=AR,•四边形RPGH为平行四边形,四边形ARHM为平行四边形, •AM//RH,RH//PG,AM//PG;•/MN//PQ,MN二平面PQG,PQ平面PQG,•MN//平面PQG;同理可证,AM//平面PQG•又直线AM与直线MN相交,•平面MNA//平面PQG。3.如图:三棱锥P-ABC,D,E,F分别是棱PAPBPC的中点,求证:平面DEF//平面ABG4、点P是AABC所在平面外一点,A,8',C分别是△PBC、△PCA△PAB的重心。求证:平面A,B'C'〃平面ABC(五)课堂小结1、两个平面平行:(1)定义:平面与平面没有公共点;(2)判定定理:线面平行5则面面平行。2、数学思想方法:转化的思想面面平行转化为二,线面平行线线平行空间问题二二平面问题(六)作业课本习题2.2A组7、8。♦教学反思略。

10000+的老师在这里下载备课资料