2017_18学年高中数学2.2.2平面与平面平行的判定课时作业
加入VIP免费下载

2017_18学年高中数学2.2.2平面与平面平行的判定课时作业

ID:1224155

大小:266.35 KB

页数:8页

时间:2022-08-15

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第二章2.22.2.2直线与平面平行的性质A级 基础巩固一、选择题1.在长方体ABCD-A′B′C′D′中,下列结论正确的是( D )A.平面ABCD∥平面ABB′A′B.平面ABCD∥平面ADD′A′C.平面ABCD∥平面CDD′C′D.平面ABCD∥平面A′B′C′D′[解析] 长方体ABCD-A′B′C′D′中,上底面ABCD与下底面A′B′C′D′平行,故选D.2.下列命题正确的是( D )①一个平面内有两条直线都与另外一个平面平行,则这两个平面平行;②一个平面内有无数条直线都与另外一个平面平行,则这两个平面平行;③一个平面内任何直线都与另外一个平面平行,则这两个平面平行;④一个平面内有两条相交直线都与另外一个平面平行,则这两个平面平行.A.①③  B.②④  C.②③④  D.③④[解析] 如果两个平面没有任何一个公共点,那么我们就说这两个平面平行,也即是两个平面没有任何公共直线.对于①:一个平面内有两条直线都与另外一个平面平行,如果这两条直线不相交,而是平行,那么这两个平面相交也能够找得到这样的直线存在.对于②:一个平面内有无数条直线都与另外一个平面平行,同①.对于③:一个平面内任何直线都与另外一个平面平行,则这两个平面平行.这是两个平面平行的定义.对于④:一个平面内有两条相交直线都与另外一个平面平行,则这两个平面平行.这是两个平面平行的判定定理.所以只有③④正确,选择D.3.已知一条直线与两个平行平面中的一个相交,则它必与另一个平面( B )A.平行  B.相交C.平行或相交  D.平行或在平面内[解析] 如图所示. 4.经过平面α外两点,作与α平行的平面,则这样的平面可以作( B )A.1个或2个  B.0个或1个C.1个  D.0个[解析] 若平面α外的两点所确定的直线与平面α平行,则过该直线与平面α平行的平面有且只有一个;若平面α外的两点所确定的直线与平面α相交,则过该直线的平面与平面α平行的平面不存在.5.如右图所示,设E、F、E1、F1分别是长方体ABCD-A1B1C1D1的棱AB、CD、A1B1、C1D1的中点,则平面EFD1A1与平面BCF1E1的位置关系是( A )A.平行  B.相交  C.异面  D.不确定[解析] ∵E1和F1分别是A1B1和D1C1的中点,∴A1D1∥E1F1,又A1D1⊄平面BCF1E1,E1F1⊂平面BCF1E1,∴A1D1∥平面BCF1E1.又E1和E分别是A1B1和AB的中点,∴A1E1綊BE,∴四边形A1EBE1是平行四边形,∴A1E∥BE1,又A1E⊄平面BCF1E1,BE1⊂平面BCF1E1,∴A1E∥平面BCF1E1,又A1E⊂平面EFD1A1,A1D1⊂平面EFD1A1,A1E∩A1D1=A1,∴平面EFD1A1∥平面BCF1E1.6.已知直线l、m,平面α、β,下列命题正确的是( D )A.l∥β,l⊂α⇒α∥βB.l∥β,m∥β,l⊂α,m⊂α⇒α∥βC.l∥m,l⊂α,m⊂β⇒α∥βD.l∥β,m∥β,l⊂α,m⊂α,l∩m=M⇒α∥β[解析] 如右图所示,在长方体ABCD-A1B1C1D1中,直线AB∥CD,则直线AB∥平面 DC1,直线AB⊂平面AC,但是平面AC与平面DC1不平行,所以选项A错误;取BB1的中点E,CC1的中点F,则可证EF∥平面AC,B1C1∥平面AC.又EF⊂平面BC1,B1C1⊂平面BC1,但是平面AC与平面BC1不平行,所以选项B错误;直线AD∥B1C1,AD⊂平面AC,B1C1⊂平面BC1,但平面AC与平面BC1不平行,所以选项C错误;很明显选项D是两个平面平行的判定定理,所以选项D正确.二、填空题7.若夹在两个平面间的三条平行线段相等,那么这两个平面的位置关系为__平行或相交__.[解析] 三条平行线段共面时,两平面可能相交也可能平行,当三条平行线段不共面时,两平面一定平行.8.已知平面α和β,在平面α内任取一条直线a,在β内总存在直线b∥a,则α与β的位置关系是__平行__(填“平行”或“相交”).[解析] 假若α∩β=l,则在平面α内,与l相交的直线a,设a∩l=A,对于β内的任意直线b,若b过点A,则a与b相交,若b不过点A,则a与b异面,即β内不存在直线b∥a.故α∥β.三、解答题9.如图所示,四棱锥P-ABCD的底面ABCD为矩形,E、F、H分别为AB、CD、PD的中点.求证:平面AFH∥平面PCE.[解析] 因为F为CD的中点,H为PD的中点,所以FH∥PC,所以FH∥平面PCE.又AE∥CF且AE=CF,所以四边形AECF为平行四边形,所以AF∥CE,所以AF∥平面PCE.由FH⊂平面AFH,AF⊂平面AFH,FH∩AF=F,所以平面AFH∥平面PCE. 10.(2016·南平高二检测)在正方体ABCD-A1B1C1D1中,M,N,P分别是AD1,BD和B1C的中点.求证:(1)MN∥平面CC1D1D;(2)平面MNP∥平面CC1D1D.[证明] (1)连接AC,CD1.因为ABCD为正方形,N为BD中点,所以N为AC中点.又因为M为AD1中点,所以MN∥CD1.因为MN⊄平面CC1D1D,CD1⊂平面CC1D1D,所以MN∥平面CC1D1D.(2)连接BC1,C1D,因为B1BCC1为正方形,P为BC1的中点,所以P为BC1中点,又因为N为BD中点,所以PN∥C1D.因为PN⊄平面CC1D1D,C1D⊂平面CC1D1D,所以PN∥平面CC1D1D,由(1)知,MN∥平面CC1D1D且MN∩PN=N,所以平面MNP∥平面CC1D1D.B级 素养提升一、选择题1.a、b、c为三条不重合的直线,α、β、γ为三个不重合平面,现给出六个命题.①a∥c,b∥c⇒a∥b;②a∥γ,b∥γ⇒a∥b;③α∥c,β∥c⇒α∥β;④α∥γ,β∥γ⇒α∥β;⑤α∥c,a∥c⇒α∥a;⑥a∥γ,α∥γ⇒α∥a.其中正确的命题是( C )A.①②③  B.①④⑤C.①④  D.①③④[解析] ①平行公理.②两直线同时平行于一平面,这两条直线可相交、平行或异面. ③两平面同时平行于一直线,这两个平面相交或平行.④面面平行传递性.⑤一直线和一平面同时平行于另一直线,这条直线和平面或平行或直线在平面内.⑥一直线和一平面同时平行于另一平面,这直线和平面可平行也可能直线在平面内.故①④正确.2.下列结论中:(1)过不在平面内的一点,有且只有一个平面与这个平面平行;(2)过不在平面内的一条直线,有且只有一个平面与这个平面平行;(3)过不在直线上的一点,有且只有一条直线与这条直线平行;(4)过不在直线上的一点,有且仅有一个平面与这条直线平行.正确的序号为( C )A.(1)(2)  B.(3)(4)  C.(1)(3)  D.(2)(4)3.若a、b、c、d是直线,α、β是平面,且a、b⊂α,c、d⊂β,且a∥c,b∥d,则平面α与平面β( D )A.平行  B.相交C.异面  D.不能确定4.若平面α∥平面β,直线a∥α,点B∈β,则在平面β内过点B的所有直线中( A )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线[解析] 当直线a⊂β,B∈a上时满足条件,此时过B不存在与a平行的直线,故选A.二、填空题5.如图是四棱锥的平面展开图,其中四边形ABCD为正方形,E、F、G、H分别为PA、PD、PC、PB的中点,在此几何体中,给出下面四个结论:①平面EFGH∥平面ABCD;②平面PAD∥BC;③平面PCD∥AB; ④平面PAD∥平面PAB.其中正确的有__①②③__.(填序号)[解析] 把平面展开图还原为四棱锥如图所示,则EH∥AB,所以EH∥平面ABCD.同理可证EF∥平面ABCD,所以平面EFGH∥平面ABCD;平面PAD,平面PBC,平面PAB,平面PDC均是四棱锥的四个侧面,则它们两两相交.∵AB∥CD,∴平面PCD∥AB.同理平面PAD∥BC.6.如右图所示,在正方体ABCD-A1B1C1D1中,E、F、G、H分别为棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足__点M在FH上__时,有MN∥平面B1BDD1.[解析] ∵FH∥BB1,HN∥BD,FH∩HN=H,∴平面FHN∥平面B1BDD1,又平面FHN∩平面EFGH=FH,∴当M∈FH时,MN⊂平面FHN,∴MN∥平面B1BDD1.C级 能力拔高1.已知点S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB边AB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.[解析] 解法一:连接CG交DE于点H,∵DE是△ABC的中位线,∴DE∥AB.在△ACG中,D是AC的中点,且DH∥AG,∴H是CG的中点.∴FH是△SCG的中位线,∴FH∥SG. 又SG⊄平面DEF,FH⊂平面DEF,∴SG∥平面DEF.解法二:∵EF为△SBC的中位线,∴EF∥SB.∵EF⊄平面SAB,SB⊂平面SAB,∴EF∥平面SAB.同理:DF∥平面SAB,EF∩DF=F,∴平面SAB∥平面DEF,又∵SG⊂平面SAB,∴SG∥平面DEF.2.如图,在正方形ABCD-A1B1C1D1中,E,F,M分别是棱B1C1,BB1,C1D1的中点,是否存在过点E,M且与平面A1FC平行的平面?若存在,请作出并证明;若不存在,请说明理由.[思路分析] 由正方体的特征及N为BB1的中点,可知平面A1FC与直线DD1相交,且交点为DD1的中点G.若过M,E的平面α与平面A1FCG平行,注意到EM∥B1D1∥FG,则平面α必与CC1相交于点N,结合M,E为棱C1D1,B1C1的中点,易知C1N∶C1C=.于是平面EMN满足要求.[解析] 如图,设N是棱C1C上的一点,且C1N=C1C时,平面EMN过点E,M且与平面A1FC平行.证明如下:设H为棱C1C的中点,连接B1H,D1H.∵C1N=C1C,∴C1N=C1H.又E为B1C1的中点,∴EN∥B1H. 又CF∥B1H,∴EN∥CF.又EN⊄平面A1FC,CF⊂平面A1FC,∴EN∥平面A1FC.同理MN∥D1H,D1H∥A1F,∴MN∥A1F.又MN⊄平面A1FC,A1F⊂平面A1FC,∴MN∥平面A1FC.又EN∩MN=N,∴平面EMN∥平面A1FC.

10000+的老师在这里下载备课资料