2.2.2 平面与平面平行的判定 一、基础过关1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是( )A.相交B.平行C.异面D.不确定2.平面α与平面β平行的条件可以是( )A.α内的一条直线与β平行B.α内的两条直线与β平行C.α内的无数条直线与β平行D.α内的两条相交直线分别与β平行3.给出下列结论,正确的有( )①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是( )A.12B.8C.6D.55.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是________.6.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.8.在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.
求证:平面A1EFD1∥平面BCF1E1.二、能力提升9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是( )A.α,β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β10.正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是( )A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G11.如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、D、B四点共面;(2)平面AMN∥平面EFDB.三、探究与拓展13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.
答案1.B 2.D 3.B 4.D 5.相交或平行6.③7.证明 由于AB∥CD,BE∥CF,故平面ABE∥平面DCF.而直线AE在平面ABE内,根据线面平行的定义,知AE∥平面DCF.8.证明 ∵E、E1分别是AB、A1B1的中点,∴A1E1∥BE且A1E1=BE.∴四边形A1EBE1为平行四边形.∴A1E∥BE1.∵A1E⊄平面BCF1E1,BE1⊂平面BCF1E1.∴A1E∥平面BCF1E1.同理A1D1∥平面BCF1E1,A1E∩A1D1=A1,∴平面A1EFD1∥平面BCF1E1.9.D 10.A 11.M∈线段FH12.证明 (1)∵E、F分别是B1C1、C1D1的中点,∴EF綊B1D1,∵DD1綊BB1,∴四边形D1B1BD是平行四边形,∴D1B1∥BD.∴EF∥BD,即EF、BD确定一个平面,故E、F、D、B四点共面.(2)∵M、N分别是A1B1、A1D1的中点,∴MN∥D1B1∥EF.又MN⊄平面EFDB,EF⊂平面EFDB.∴MN∥平面EFDB.连接NE,则NE綊A1B1綊AB.∴四边形NEBA是平行四边形.∴AN∥BE.又AN⊄平面EFDB,BE⊂平面EFDB.∴AN∥平面EFDB.∵AN、MN都在平面AMN内,且AN∩MN=N,∴平面AMN∥平面EFDB.
13.(1)证明 连接BM、BN、BG并延长交AC、AD、CD分别于P、F、H.∵M、N、G分别为△ABC、△ABD、△BCD的重心,则有===2.连接PF、FH、PH,有MN∥PF.又PF⊂平面ACD,MN⊄平面ACD,∴MN∥平面ACD.同理MG∥平面ACD,MG∩MN=M,∴平面MNG∥平面ACD.(2)解 由(1)可知==,∴MG=PH.又PH=AD,∴MG=AD.同理NG=AC,MN=CD.∴△MNG∽△DCA,其相似比为1∶3,∴S△MNG∶S△ADC=1∶9.