2022年人教A版高中数学必修二《2.2.3直线与平面平行的性质》课件
加入VIP免费下载

2022年人教A版高中数学必修二《2.2.3直线与平面平行的性质》课件

ID:1224324

大小:489.5 KB

页数:50页

时间:2022-08-15

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2.2.3直线与平面平行的性质1 自学导引(学生用书P38)2 1.掌握直线与平面平行的性质定理,明确由线面平行可推出线线平行.2.结合具体问题体会化归与转化的数学思想.3 课前热身(学生用书P38)4 线面平行的性质定理,用符号语言可表示为a∥b5 名师讲解(学生用书P38)6 1.直线与平面平行的性质定理由于过l可作无数个平面β,这些平面与α的交线也都平行于l.即若l∥α,则在α内可以找到无数条直线与l平行.(当然这无数条直线相互平行)2.应用线面平行的性质定理解题的关键是利用已知作辅助平面,然后把已知中的线面平行转化为直线和交线平行.7 典例剖析(学生用书P38)8 题型一直线与平面平行的性质定理的应用例1:求证:如果一条直线和两个相交平面都平行.那么这条直线和它们的交线平行.已知:α∩β=l,a∥α,a∥β.求证:a∥l.分析:已知条件有线面平行关系,可利用线面平行的性质定理转化为线线平行.9 证明:证法1:如下图,过a作平面γ交α于b.10 ∵a∥α,∴a∥b.过a作平面ε交平面β于c.∵a∥β,∴a∥c,∴b∥c.又bβ且cβ.∴b∥β.又平面α过b交β于l,∴b∥l.∵a∥b,∴a∥l.11 证法2:如下图,在l上任取一点A,过A和a作平面与α相交于l1,与β相交于l2,则由线面平行的性质定理可知a∥l1,a∥l2.又过一点只能作一条直线与另一条直线平行.12 ∴l1与l2重合.又l1α,l2β.∴l1、l2重合于l.∴a∥l.规律技巧:应用线面平行的性质定理时,应着力寻找过已知直线的平面与已知平面的交线.本题证明2是同一法.13 变式训练1:三个平面两两相交,有三条交线,如果其中有两条交线平行,那么它们也和第三条交线平行.已知:α∩β=a,β∩γ=b,γ∩α=c,且a∥b.求证:a∥b∥c.证明:∵a∥b,bγ,aγ.∴a∥γ.又aα,α∩γ=c,∴a∥c.∴a∥b∥c.14 题型二证明线面平行问题例2:如图,在正方体ABCD—A1B1C1D1中,M、N分别是AA1,CD1的中点.求证:MN∥平面ABCD.分析:欲证MN∥平面ABCD,由判定定理知,要在平面ABCD内找一条直线与MN平行.由于N为CD1的中点,取CD的中点E,连结AE,NE,证明四边形AMNE为平行四边形即可.15 证明:如图,取CD的中点E,连结AE,NE,由N、E分别为CD1与CD的中点,可得EN∥D1D,且又AM∥D1D,且,∴EN∥AM,且EN=AM.∴四边形AMNE为平行四边形,∴MN∥AE.又AE平面ABCD,MN平面ABCD,∴MN∥平面ABCD.16 规律技巧:证线面平行想到证线线平行,证线线平行又转化为线面平行.这种相互转化的基本思想就是证明线面关系的有效方法.17 变式训练2:如图所示,在长方体ABCD-A′B′C′D′中,点P∈BB′(不与B、B′重合).PA∩BA′=M,PC∩BC′=N,求证:MN∥平面B′AC.18 证明:如图所示,连结AC、A′C′.∵ABCD-A′B′C′D′是长方体,∴AC∥A′C′.又AC面BA′C′,A′C′平面BA′C′,∴AC∥平面BA′C′.又∵平面PAC过AC与平面BA′C′交于MN,∴MN∥AC.∵MN平面B′AC,∴MN∥平面B′AC.19 题型三性质定理的综合应用例3:如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH,CD∥平面EFGH.(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.20 分析:本题考查线面平行的判定和性质定理的应用.(1)转化为证明AB、CD分别平行于平面EFGH内的一条直线;(2)设EF=x,用x表示四边形EFGH的周长,转化为求关于x的函数值域.21 解:(1)证明:∵四边形EFGH为平行四边形,∴EF∥HG.∵HG平面ABD,∴EF∥平面ABD.∵EF平面ABC,平面ABD∩平面ABC=AB,∴EF∥AB.∴AB∥平面EFGH.同理可证,CD∥平面EFGH.(2)解:设EF=x(0

10000+的老师在这里下载备课资料