课题直线与平面、平面与平面平行的性质主备人学习目标1、知识与技能(1)掌握直线与平面平行的性质定理及其应用;(2)掌握两个平面平行的性质定理及其应用。2、过程与方法学生通过观察与类比,借助实物模型理解性质及应用。3、情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)进一步渗透等价转化的思想。学习重点难点重点:两个性质定理。难点:(1)性质定理的证明;(2)性质定理的正确运用。学法与教具1、学法:学生借助实物,通过类比、交流等,得出性质及基本应用。2、教学用具:投影仪、投影片、长方体模型学习过程备注(一)创设情景、引入新课1、思考题:教材第60页,思考(1)(2)学生思考、交流,得出结论(1)一条直线与平面平行,并不能保证这个平面内的所有直线都与这个直线平行;(2)直线a与平面α平行,过直线a的某一平面,若与平面α相交,则直线a就平行于这条交线。在教师的启发下,师生共同完成该结论的证明过程。于是,得到直线与平面平行的性质定理。(二)讲授新课定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。简记为:线面平行则线线平行。符号表示:a∥αaβa∥bα∩β=b作用:利用该定理可解决直线间的平行问题。
2、例3培养学生思维,动手能力,激发学习兴趣。例4性质定理的直接应用,它渗透着化归思想,教师应多做引导。3、思考:如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么样的位置关系?学生借助长方体模型思考、交流得出结论:异面或平行。再问:平面AC内哪些直线与B'D'平行?怎么找?在教师的启发下,师生共同完成该结论及证明过程,于是得到两个平面平行的性质定理。定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。符号表示:α∥βα∩γ=aa∥bβ∩γ=b教师指出:可以由平面与平面平行得出直线与直线平行4、例5以讲授为主,引导学生共同完成,逐步培养学生应用定理解题的能力。(三)自主学习、巩固知识练习:课本第63页学生独立完成,教师进行纠正。(四)归纳整理、整体认识1、通过对两个性质定理的学习,大家应注意些什么?2、本节课涉及到哪些主要的数学思想方法?达标测试1.直线及平面,使成立的条件是()A.B.C.D.2、正方体ABCD-A1B1C1D1中,E为DD中点,则BD1和平面ACE位置关系是.3.下列命题,其中真命题的个数为.①直线l平行于平面内的无数条直线,则l∥;②若直线a在平面外,则a∥;③若直线a∥b,直线b,则a∥;④若直线a∥b,b,那么直线a就平行于平面内的无数条直线.答案14.写出平面∥平面的一个充分条件
(写出一个你认为正确的即可).答案存在两条异面直线a,b,a,b,a∥,b∥4.对于不重合的两个平面与,给定下列条件:①存在平面,使得,都垂直于;②存在平面,使得,都平行于;③存在直线l,直线m,使得l∥m;④存在异面直线l、m,使得l∥,l∥,m∥,m∥.其中,可以判定与平行的条件有(写出符合题意的序号).答案②④5.(2008·海南,宁夏文,12)已知平面⊥平面,∩=l,点A∈,Al,直线AB∥l,直线AC⊥l,直线m∥,m∥,则下列四种位置关系中,一定成立的是.①AB∥m②AC⊥m③AB∥④AC⊥答案①②③6.(2008·湖南理,5)设有直线m、n和平面、.下列命题不正确的是(填序号).①若m∥,n∥,则m∥n②若m,n,m∥,n∥,则∥③若⊥,m,则m⊥④若⊥,m⊥,m,则m∥答案①②③小结与作业课后反思