学习必备欢迎下载课题:§2.2.3直线与平面平行的性质教学任务分析:学问与技能通过观看探究,进行合情推理发觉直线与平面平行的性质定理,并能精确地用数学语言表述该定理;能够对直线与平面平行的性质定理作出严密的规律论证,并能进行一些简洁的应用.过程与方法通过直观感知和操作确认的方法,培育和进展同学的几何直觉、运用图形语言进行沟通的才能;体会和感受通过自己的观看、操作等活动进行合情推理发觉并获得数学结论的过程.情感、态度、价值观通过自主学习、主动参加、积极探究的学习过程,激发同学学习数学的自信心和积极性,培育同学良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法.教学重点与难点:重点通过直观感知、提出猜想进而操作确认,获得直线与平面平行的性质定理.难点综合应用线面平行的判定定理和性质定理进行线线平行与线面平行的相互转化.教学流程与环节设计:创设情境组织探究探究讨论巩固练习作业回馈课外活动实际问题引入,激发同学探究爱好和求知欲望.结合实际问题主动参加,通过直观感知、提出猜想进而操作确认获得定理;然后结合例题体会定理的应用.结合例题,总结线线平行与线面平行的相互转化,体会线面平行的判定定理和性质定理的综合运用.综合应用判定定理和性质定懂得决简洁问题,规范解题步骤与格式,培育同学良好的学习习惯.进一步巩固定理,深化基本方法.结合线线平行与线面平行的转化,摸索线线平行、线面平行、面面平行的联系,提出合理猜想,主动探究并操作验证.
学习必备欢迎下载教学情境与操作设计:环节教学内容设计师生双边互动1.复习线面位置关系与线面平行的判定.(1)直线与平面的位置关系的各种情形;(2)直线与平面平行的判定定理.2.摸索:(1)假如一条直线与平面平行,那么这条直线创是否与这个平面内的全部直线都平行?(2)教室内日光灯管所在的直线与地面平行,如何在地面上作一条直线与灯管所在直线设平行?3.木工小罗在处理如下列图的一块木料时,发觉该木情料表面ABCD内有一条裂纹DP,已知BC∥平面AC.他准备经过点P和BC将木料锯开,却不知如何画线,你能帮忙他解决这个问题吗?境D′师:复习引入,温故知新,为学习新知做铺垫.引导学生通过思考和实际问题,进行观看、感知、实践操作,提高同学学习爱好,激发同学的求知欲望和探究精神.生:依据问题进行直观感知,进而提出合理猜想.A′P·C′BCAB探究:1)两条直线平行的条件是什么?2)平行于平面的一条直线与该平面内的直线的位置关系有几种可能?3)平行于平面的一条直线与该平面内一条直线平行,需附加什么条件?4)平面内的这条直线具有什么特别位置?组发觉:师:引导同学结合上面的直观感知,层层递进,逐步探究,体会数学结论的发觉过程.生:逐步探究,仔细摸索,画出相应图形,进行观看,感知、猜想.1)两直线平行的条件是:织在同一平面内;无公共点师:引导同学猜想、发觉,并画出图形进行操作确认.2)平行于平面的一条直线与该平面内的直线无公共点,位置关系有两种:平行或异面;探3)平行于平面的一条直线与该平面内一条直线平行,需附加条件:它们在同一平面()内;4)平面内的这条直线是这个平面与过已知直线的平究面()的交线.5)提出猜想:1)由以上的探究与发觉你能得出怎样的结论?2)你能否用数学符号语言描述你所发觉的结论?3)可否画出符合你的结论的图形?4)你能否对你发觉的结论给出严格的规律证明?生:依据探究问题,提出大胆猜想.师:引导同学提出合理猜想,并分别用文字表达、数学符号语言和图形语言加以描述.生:利用不同语言描述发觉的结论,并给出严格规律证明.
学习必备欢迎下载环节教学内容设计师生双边互动形成体会:直线与平面平行的性质定理:1)文字表达一条直线与一个平面平行,就过这条直线的任一平面与此平面的交线与该直线平行.2)符号语言描述a//aa//bbβa3)图形语言描述如右图.αb定理探微:1)定理可以作为直线与直线平行的判定方法;组2)定理中三个条件缺一不行;3)供应了过已知平面内一点作与该平面的平行线相平行的直线的方法,即:帮助平面法.织定理应用举例:例1.引入问题解决:探究:1)怎样确定截面(由哪些条件确定)?2)过P点所画的线有什么特别意义,具有什么性质,探详细应怎样画?D′A′P·C′BD究C师:引导同学将猜想发觉规范化,形成体会性结论,体会与感受数学结论的发现与形成过程:直观感知→操作确认→逻辑证明→形成体会.生:明确定理内容,能够精确娴熟地用不同语言描述定理.师:引导同学深化分析定理的条件及其用途,进一步深刻懂得定理.师:引导同学分析画截面的关键是确定截面与上底面的交线.生:依据探究问题,画出截面与上底面的交线,进而作出截面.师:引导同学体会其中的方法,并总结过空间一点作已知直线的平行线的方法.AB解:(略)例2.(教材P61例4)探究:1)已知是何种位置关系,结论又是何种位置关系?2)证明线面平行的方法与关键是什么?解:(略).备选例题:例3.求证结合线面平行的性质定理利用反证法证明面面平行的判定定理.师:引导同学分析条件与结论,熟悉到解题关键是实现线线与线面平行间的转化.生:利用线面平行的性质定理和判定定理,实现线线平行与线面平行间的转化,解答本例.师:向同学渗透转化的思想,强调一种方法:帮助平面法.规范解题步骤与格式.
学习必备欢迎下载环节教学内容设计师生双边互动组例4.求证:假如一条直线和两个相交平面平行,那么这条直线和它们的交线平行.织分析:1)用数学符号语言描述上述命题,写出已知和求证;2)用图形语言描述上述命题,即画出相应图形;探3)综合利用线面平行的性质定理与判定定懂得答本题.究解:(略).师:本例应着重留意引导同学综合利用线面平行的性质定理与判定定懂得决相关问题,渗透化归与转化的数学思想方法.并锤炼同学娴熟文字表达、数学符号语言、图形语言之间的相互转化.结合例题探究发觉:直线与平面平行的性质定理和直线与平面平行的判探定定理常常要综合使用,亦即是通过线线平行推出线面平行,再通过线面平行推出新的线线平行,复杂的题目仍可以连续推下去.究在使用中要留意一种思想和一种方法:1)转化的数学思想与即线线平行与线面平行之间的相互转化,亦即空间问题与平面问题之间的相互转化,这也是解决立体几何问题的重要思想方法.发转化的关系如下:师:渗透转化的数学思想方法,即空间问题平面化;强调一种方法,帮助平面法.判定线线平行定理现性质线面平行定理线线平行1)帮助平面法即构造帮助平面,以实现线线平行与线面平行间的相互转化.一、挑选题.1.如直线a不平行于平面α,就以下结论成立的是〔〕A.α内的全部直线都与直线a异面巩B.α内不存在与a平行的直线C.α内的直线都与a相交D.直线a与平面α有公共点2.直线a∥平面α,P∈α,过点P平行于α的直线〔〕固A.只有一条,不在平面α内B.有很多条,不肯定在α内C.只有一条,且在平面α内D.有很多条,肯定在α内练3.以下判定正确选项〔〕A.a∥α,bα,就a∥bB.a∩α=P,bα,就a与b不平行C.aα,就a∥α习D.a∥α,b∥α就,a∥b4.直线和平面平行,那么这条直线和这个平面内的〔〕A.一条直线不相交通过练习,辨析线线、线面位置关系的各种情形,进一步深化对性质定理的懂得与应用,培育同学良好的思维品质,规范解题方法、步骤与格式.
学习必备欢迎下载环节教学内容设计师生双边互动B.两条相交直线不相交C.很多条直线不相交D.任意一条直线都不相交二、填空题.1.过平面外一点作一平面的平行线有条.2.如直线a,b都平行于平面α,那么a与b的位置关系是.3.如直线a∥b,a∥平面α,就直线b与平面α的位置关系是.三、解答题.三个平面两两相交有三条交线,假如其中两条交线平行,就第三条交线也和它们分别平行.βαabcγ教材P651.习题2.2(A组)第5、6题;2.由上述两题你能发觉线面平行仍具有什么性质?3.如图,已知异面直线AB、CD都与平面平行,CA、CB、DB、DA分别交于点E、F、G、H.求证:四边形EFGH是平行四边形.作A业B与回馈EHGαFDC课前面学习了平面与平面平行的定义及其判定方法,类外比本节课的学习,通过直观感知、获得猜想、操作确认的方法自主探究平面与平面平行具有何种性质;结合线线平活行与线面平行的转化,摸索线线平行、线面平行、面面平行的联系,提出合理猜想,主动探究并操作验证.动培育同学良好的思维品质及自主学习,主动探究的意识.