河北省邯郸市临漳县第一中学高一数学直线与平面垂直的判定学案一、学习目标:知识与技能:理解直线与平面、平面与平面平行的性质定理的含义,并会应用性质解决问题过程与方法:能应用文字语言、符号语言、图形语言准确地描述直线与平面、平面与平面的性质定理二、学习重、难点学习重点:直线与平面、平面与平面平行的性质及其应用学习难点:将空间问题转化为平面问题的方法,三、学法指导及要求:1、注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。四、知识链接:1.空间直线与直线的位置关系2.直线与平面的位置关系3.平面与平面的位置关系4.直线与平面平行的判定定理的符号表示5.平面与平面平行的判定定理的符号表示五、学习过程:A问题1:1)如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系?(观察长方体)2)如果一条直线和一个平面平行,如何在这个平面内做一条直线与已知直线平行?(可观察教室内灯管和地面)A问题2:一条直线与平面平行,这条直线和这个平面内直线的位置关系有几种可能?A问题3:如果一条直线与平面α平行,在什么条件下直线与平面α内的直线平行呢?由于直线与平面α内的任何直线无公共点,所以过直线的某一平面,若与平面α相交,则直线就平行于这条交线B自主探究1:已知:∥α,β,α∩β=b。求证:∥b。直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行符号语言:线面平行性质定理作用:证明两直线平行思想:线面平行线线平行例1:有一块木料如图,已知棱BC平行于面A′C′(1)要经过木料表面A′B′C′D′ 内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线和面AC有什么关系?
例2:已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面。问题5:两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系?两个平面平行,那么其中一个平面内的直线与另一平面内的直线有何关系?自主探究2:如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,求证:a∥b平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行符号语言:面面平行性质定理作用:证明两直线平行思想:面面平行线线平行例3.求证:夹在两个平行平面间的平行线段相等已知:,,,求证:。六、达标检测:
A1.61页练习A2.下列判断正确的是( )A.∥α,,则∥b B.∩α=P,bα,则与b不平行C.,则a∥αD.∥α,b∥α,则∥bB3.直线∥平面α,P∈α,过点P平行于的直线( )A.只有一条,不在平面α内 B.有无数条,不一定在α内C.只有一条,且在平面α内 D.有无数条,一定在α内B4.下列命题错误的是()A.平行于同一条直线的两个平面平行或相交B.平行于同一个平面的两个平面平行C.平行于同一条直线的两条直线平行D.平行于同一个平面的两条直线平行或相交B5.平行四边形EFGH的四个顶点E、F、G、H、分别在空间四边形ABCD的四条边AB、BC、CD、AD、上,又EF∥BD,则()A.EH∥BD,BD不平行与FGB.FG∥BD,EH不平行于BDC.EH∥BD,FG∥BDD.以上都不对B6.若直线∥b,∥平面α,则直线b与平面α的位置关系是B7一个平面上有两点到另一个平面的距离相等,则这两个平面七、小结与反思: