2.2.3直线与平面平行的性质
2.直线与平面平行的判定方法:⑴定义法;⑵判定定理.1.直线与直线的位置关系有共面异面平行相交复习回顾:
如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.简记为:线线平行,则线面平行。判定直线与平面平行的重要依据。图形作用:符号语言:αb直线与平面平行的判定定理:
线面平行的判定定理解决了判定线面平行的问题(即所需条件);反之,在直线与平面平行的条件下,会得到什么结论?直线和平面平行的性质新课引入:
(1)如果一条直线和一个平面平行,那么这条直线和这个平面内的直线有怎样的位置关系?abαaαb问题讨论:平行异面(2)什么条件下,平面内的直线与直线a平行呢?
解决问题:
线面平行的性质定理:αmβl一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。讲授新课:作用:判定直线与直线平行的重要依据。关键:寻找平面与平面的交线。简记为:“线面平行,则线线平行”
例1如图所示的一块木料中,棱BC平行于面A'C'.过点P作直EF//B'C',棱A'B'、C'D'于点E、F,连结BE、CF,FPBCADA'B'C'D'E解:⑴如图,在平面A'C'内,下面证明EF、BE、CF为应画的线.分别交⑴要经过面A'C'内的一点P和棱BC将木料锯开,应怎样画线?例题讲解:
⑴则EF、BE、CF为应画的线.BC//B'C'EF//B'C'BC//EFEF、BE、CF共面.例1如图所示的一块木料中,棱BC平行于面A'C'.解:FPBCADA'B'C'D'E⑴要经过面内的一点P和棱BC将木料锯开,应怎样画线?
例1如图所示的一块木料中,棱BC平行于面A'C'.⑴要经过面内的一点P和棱BC将木料锯开,应怎样画线?⑵所画的线与平面AC是什么位置关系?⑵解:EF//面AC由⑴,得BE、CF都与面相交.EF//BC,EF//BC线面平行线线平行线面平行FPBCADA'B'C'D'E
例2.已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.已知:直线a、b,平面,且a//b,b//求证:提示:过a作辅助平面,且ab
例2.已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.已知:直线a、b,平面,且a//b,b//求证:证明:且过a作平面,abc性质定理判定定理线面平行线线平行线面平行
练习.ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP//GHPABCDMGHO提示:连结AC交BD于O,连结OM
⑴判定定理.线线平行线面平行⑵性质定理.线面平行线线平行1.直线与平面平行的性质定理2.判定定理与性质定理展示的数学思想方法:3.要注意判定定理与性质定理的综合运用a∥b.ab性质定理的运用.课堂小结: