直线与平面平行的性质
问题提出1.直线与平面平行的判定定理是什么?2.直线与平面平行的判定定理解决了直线与平面平行的条件问题,反之,在直线与平面平行的条件下,可以得到什么结论呢?定理:若平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.
知识探究(一):直线与平面平行的性质分析思考1:如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系?思考2:若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何?aαaα
思考3:如果直线a与平面α平行,那么经过直线a的平面与平面α有几种位置关系?αaαa
思考4:如果直线a与平面α平行,经过直线a的平面与平面α相交于直线b,那么直线a、b的位置关系如何?为什么?αabb思考5:如果直线a与平面α平行,那么经过平面α内一点P且与直线a平行的直线怎样定位?Pαa
知识探究(二):直线与平面平行的性质定理思考1:综上分析,在直线与平面平行的条件下可以得到什么结论?并用文字语言表述之.定理:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
思考2:上述定理通常称为直线与平面平行的性质定理,该定理用符号语言可怎样表述?αabβ
思考3:直线与平面平行的性质定理可简述为“线面平行,则线线平行”,在实际应用中它有何功能作用?作平行线的方法,判断线线平行的依据.αabβ
思考4:教室内日光灯管所在的直线与地面平行,如何在地面上作一条直线与灯管所在的直线平行?
理论迁移例1如图所示的一块木料中,棱BC平行于面A′C′.(1)要经过面A′C′内一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与平面AC是什么位置关系?AA′CBDPD′B′C′
例2:有一块木料如图,已知棱BC平行于面A′C′;(1)要经过木料表面A′B′C′D′内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线和面AC有什么关系?解:(1)过点P作EF∥B’C’,分别交棱A’B’,C’D’于点E,F.连接BE,CF,则EF,BE,CF就是应画的线.PA1DABB1D1C1CEF
(2)因为棱BC平行于平面A'C',平面BC'与平面A'C'交于B'C',所以BC∥B'C',由(1)知,EF∥B'C',所以,EF∥BC,因此,EF//BC,EF平面AC,BC平面AC.所以,EF//平面AC.BE、CF显然都与平面AC相交.
例3:如图,已知直线a,b,平面α,且a//b,a//α,a,b都在平面α外.求证:b//α.证明:过a作平面β,使它与平面α相交,交线为c.因为a//α,aÌβ,α∩β=c,所以a//c.因为a//b,所以,b//c.又因为cÌα,bα,所以b//α.
作业:P61练习,习题2.2A组:1.(做在书上)P62习题2.2A组:2,5,6.P63习题2.2B组:1,2.