2019年高中数学人教a版必修2第二章点、直线、平面之间的位置关系 2.3 直线与平面平行的性质 练习
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2019年高中数学2.2.3直线与平面平行的性质强化练习新人教A版必修2一、选择题1.(xx~xx·月考试题)梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α内的直线的位置关系只能是(  )A.平行B.平行或异面C.平行或相交D.异面或相交[答案] B2.已知直线a、b、c及平面α,下列哪个条件能确定a∥b(  )A.a∥α,b∥αB.a⊥c,b⊥cC.a、b与c成等角D.a∥c,b∥c[答案] D3.正方体ABCD-A1B1C1D1中,截面BA1C1与直线AC的位置关系是(  )A.AC∥截面BA1C1B.AC与截面BA1C1相交C.AC在截面BA1C1内D.以上答案都错误[答案] A[解析] ∵AC∥A1C1,又∵AC⊄面BA1C1,∴AC∥面BA1C1.4.如右图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于直线DE,则DE与AB的位置关系是(  )A.异面B.平行C.相交D.以上均有可能[答案] B[解析] ∵A1B1∥AB,AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC.又A1B1⊂平面A1B1ED,平面A1B1ED∩平面ABC=DE,∴DE∥A1B1.又AB∥A1B1,∴DE∥AB.5.如图所示,在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,EH∥FG,则EH与BD的位置关系是(  )A.平行B.相交C.异面D.不确定[答案] A [解析] ∵EH∥FG,FG⊂平面BCD,EH⊄平面BCD,∴EH∥平面BCD.∵EH⊂平面ABD,平面ABD∩平面BCD=BD,∴EH∥BD.6.已知正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,则线段PQ的长为(  )A.1B.C.D.[答案] C[解析] 由PQ∥平面AA1BB知PQ∥AB1,又P为AO1的中点,∴PQ=AB1=.二、填空题7.若夹在两个平面间的三条平行线段相等,那么这两个平面的位置关系是________.[答案] 平行或相交8.长方体ABCD-A1B1C1D1的底面ABCD是正方形,其侧面展开图是边长为8的正方形.E,F分别是侧棱AA1,CC1上的动点,AE+CF=8.P在棱AA1上,且AP=2,若EF∥平面PBD,则CF=________.[答案] 2[解析] 连接AC交BD于O,连接PO.因为EF∥平面PBD,EF⊂平面EACF,平面EACF∩平面PBD=PO,所以EF∥PO,在PA1上截取PQ=AP=2,连接QC,则QC∥PO,所以EF∥QC,所以EFCQ为平行四边形,则CF=EQ,又因为AE+CF=8,AE+A1E=8,所以A1E=CF=EQ=A1Q=2,从而CF=2.9.如图,ABCD是空间四边形,E、F、G、H分别是其四边上的点且共面,AC∥平面EFGH,AC=m,BD=n,当EFGH是菱形时,=________. [答案] [解析] ===,而EF=FG.∴EF=,∴==.三、解答题10.如图所示,已知平面α∩β=b,平面β∩γ=a,平面α∩γ=c,a∥α.求证:b∥c.[分析] 要证b∥c,只需证明b∥a和c∥a,已知条件中有线面平行,于是可以将线面平行转化为线线平行.[证明] ∵a∥α,β是过a的平面,α∩β=b,∴a∥b.同理可得a∥c.∴b∥c.11.如图,在长方体ABCD-A1B1C1D1中,E、H分别是棱A1B1、D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F、G.求证:FG∥平面ADD1A1.[证明] ∵EH∥A1D1,又A1D1∥B1C1,∴EH∥B1C1,∴EH∥平面BCC1B1.又平面EHGF∩平面BCC1B1=FG,∴EH∥FG,∴FG∥A1D1.又FG⊄平面ADD1A,A1D1⊂平面ADD1A1,∴FG∥平面ADD1A1.12.如图,在三棱柱ABC-A1B1C1中,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC=2FB=2,若MB∥平面AEF,试判断点M在何位置.[解析] 若MB∥平面AEF,过F,B,M作平面FBMN交AE于N,连接MN,NF.因为BF∥平面AA1C1C,BF⊂平面FBMN,平面FBMN∩平面AA1C1C=MN,所以BF∥MN. 又MB∥平面AEF,MB⊂平面FBMN,平面FBMN∩平面AEF=FN,所以MB∥FN,所以BFNM是平行四边形,所以MN∥BF,MN=BF=1.而EC∥FB,EC=2FB=2,所以MN∥EC,MN=EC=1,故MN是△ACE的中位线.所以M是AC的中点时,MB∥平面AEF.

10000+的老师在这里下载备课资料