2.2.4《平面与平面平行的性质》
使学生掌握平面与平面平行的性质,并会应用性质解决问题。让学生知道直线与直线、直线与平面、平面与平面之间的位置关系可以相互转化。教学目的
复习提问、引入新课复习:如何判断平面和平面平行?答:有两种方法,一是用定义法,须判断两个平面没有公共点;二是用平面和平面平行的判定定理,须判断一个平面内有两条相交直线都和另一个平面平行.思考:如果两个平面平行,会有哪些结论呢?
探究新知探究1. 如果两个平面平行,那么一个平面内的直线与另一个平面有什么位置关系?a答:如果两个平面平行,那么一个平面内的直线与另一个平面平行.
借助长方体模型探究结论:如果两个平面平行,那么两个平面内的直线要么是异面直线,要么是平行直线.探究新知探究2.如果两个平面平行,两个平面内的直线有什么位置关系?
探究3:当第三个平面和两个平行平面都相交时,两条交线有什么关系?为什么?探究新知答:两条交线平行.下面我们来证明这个结论abαβ
如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,求证:a∥b证明:∵α∩γ=a,β∩γ=b∴aÌα,bÌβ∵α∥β∴a,b没有公共点,又因为a,b同在平面γ内,所以,a∥b这个结论可做定理用结论:当第三个平面和两个平行平面都相交时,两条交线平行
定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行。用符号语言表示性质定理:a//b想一想:这个定理的作用是什么?答:可以由平面与平面平行得出直线与直线平行
例题分析,巩固新知例1. 求证:夹在两个平行平面间的平行线段相等.讨论:解决这个问题的基本步骤是什么?答:首先是画出图形,再结合图形将文字语言转化为符号语言,最后分析并书写出证明过程。如图,α//β,AB//CD,且AÎα,CÎα,BÎβ,DÎβ.求证:AB=CD.证明:因为AB//CD,所以过AB,CD可作平面γ,且平面γ与平面α和β分别相交于AC和BD.因为α//β,所以 BD//AC.因此,四边形ABDC是平行四边形.所以 AB=CD.
练习巩固1.指导学生完成P61练习.2.如果一条直线与两个平行平面中的一个相交,那么它与另一个也相交。αβAl
γαβAlB已知:如图,α∥β,l∩α=A求证:l与β相交。·证明:在β上取一点B,过l和B作平面γ,由于γ与α有公共点A,γ与β有公共点B,所以,γ与α,β都相交,设γ∩α=a,γ∩β=b,因为α∥β,所以a∥b,又因为l,a,b都在平面γ内,且l与相a交于点A,所以l与b相交,所以l与β相交。
小结归纳:1、两个平面平行具有如下的一些性质:⑴如果两个平面平行,那么在一个平面内的所有直线都与另一个平面平行⑵如果两个平行平面同时和第三个平面相交,那么它们的交线平行.⑶如果一条直线和两个平行平面中的一个相交,那么它也和另一个平面相交⑷夹在两个平行平面间的所有平行线段相等(5)过平面外一点有且只有一个平面与这个平面平行;(6)平行于同一平面的两平面平行
小结归纳:2、线线平行线面平行面面平行,要注意这里平行关系的互相转化.3、在应用相关定理时要注意辅助线、辅助面的作法作业:P627,8题
再见