2.2.4 平面与平面平行的性质【选题明细表】知识点、方法题号面面平行的性质1,2面面平行的性质的应用4,7,8,9,10综合应用3,5,6,111.(2018·陕西延安期末)如果一条直线与两个平行平面中的一个平行,那这条直线与另一个平面的位置关系是( D )(A)平行(B)相交(C)在平面内(D)平行或在平面内解析:由题这条直线与另一个平面平行或者直线在平面上.故选D.2.已知两条直线l,m,α,β是两个平面,下列命题正确的是( D )(A)若α∥β,l∥α,则l∥β(B)若l∥α,m∥α,则l∥m(C)若α∥β,l∥α,m∥β,则l∥m(D)若α∥β,l⊂α,则l∥β解析:A,l可能在β内,B,l与m可能相交、平行、异面,C,与B一样的结论.D正确.
3.(2018·平泉中学高一测试)已知平面α∥平面β,直线a⊂α,直线b⊂β,则①a∥b;②a,b为异面直线;③a,b一定不相交;④a∥b或a,b异面,其中正确的是( C )(A)①②(B)②③(C)③④(D)①②③④4.平面α截一个三棱锥,如果截面是梯形,那么平面α必定和这个三棱锥的( C )(A)一个侧面平行(B)底面平行(C)仅一条棱平行(D)某两条相对的棱都平行解析:当平面α∥某一平面时,截面为三角形,故选项A,B错.当平面α∥SA时,如图截面是四边形DEFG,又SA⊂平面SAB,平面SAB∩α=DG,所以SA∥DG,同理SA∥EF,所以DG∥EF,同理当α∥BC时,GF∥DE,因为截面是梯形,所以四边形DEFG中仅有一组对边平行,故α仅与一条棱平行.故选C.5.如图,正方体ABCDA1B1C1D1中过BD1的平面,分别与AA1,CC1交于M,N,则四边形BND1M的形状为 .
解析:由题意知,平面A1ABB1∥平面C1CDD1,所以MB∥D1N,同理,D1M∥BN.所以四边形BND1M是平行四边形.答案:平行四边形6.如图是正方体的平面展开图:在这个正方体中,①BM∥平面ADE;②CN∥平面BAF;③平面BDM∥平面AFN;④平面BDE∥平面NCF,以上说法正确的是 (填序号). 解析:以四边形ABCD为下底还原正方体,如图所示,则易判定四个说法都正确.答案:①②③④7.如图所示,已知E,F分别是正方体ABCDA1B1C1D1的棱AA1,CC1的中点,求证:四边形BED1F是平行四边形.
解:取D1D的中点G,连接EG,GC.因为E是A1A的中点,G是D1D的中点,所以EGAD.由正方体性质知ADBC,所以EGBC,所以四边形EGCB是平行四边形,所以EBGC.又因为G,F分别是D1D,C1C的中点,所以D1GFC,所以四边形D1GCF为平行四边形,所以D1FGC,所以EB∥D1F,所以E,B,F,D1四点共面,四边形BED1F是平面四边形.又因为平面ADD1A1∥平面BCC1B1,平面EBFD1∩平面ADD1A1=ED1,平面EBFD1∩平面BCC1B1=BF,所以ED1∥BF,所以四边形BED1F是平行四边形.8.
如图,在三棱台A1B1C1ABC中,点D在A1B1上,且AA1∥BD,点M是△A1B1C1内的一个动点,且有平面BDM∥平面A1C1CA.则动点M的轨迹是( C )(A)平面(B)直线(C)线段,但只含1个端点(D)圆解析:因为平面BDM∥平面A1C1CA,平面BDM∩平面A1B1C1=DM,平面A1C1CA∩平面A1B1C1=A1C1,所以DM∥A1C1,过D作DE∥A1C1交B1C1于E,则点M的轨迹是线段DE(不包括点D).故选C.9.如图,已知平面α∥β∥γ,两条直线l,m分别与平面α,β,γ相交于点A,B,C与D,E,F.已知AB=6,=,则AC= . 解析:由题意可知=⇒AC=·AB=×6=15.答案:1510.(2018·福建厦门高一期中)如图,正方体ABCDA1B1C1D1的棱长为a,过其对角线BD1的平面分别与AA1,CC1相交于点E,F,求截面四边形BED1F面积的最小值.
解:如图,连接BD,B1D1,由平面与平面平行的性质定理可证BF∥D1E,BE∥D1F.所以四边形BED1F是平行四边形.过E点作EH⊥BD1于H.因为=2·=BD1·EH=EH·a,所以要求四边形BED1F面积的最小值,转化为求EH的最小值.因为AA1∥平面BDD1B1,所以当且仅当EH为直线AA1到平面BDD1B1的距离时,EH最小,易得EHmin=a.所以的最小值为a2.11.如图,平面α∥平面β,A,C∈α,B,D∈β,点E,F分别在线段AB与CD上,且=,求证:EF∥平面β.
证明:(1)若直线AB和CD共面,因为α∥β,平面ABDC与α,β分别交于AC,BD两直线,所以AC∥BD.又因为=,所以EF∥AC∥BD,所以EF∥平面β.(2)若AB与CD异面,连接BC并在BC上取一点G,使得=,则在△BAC中,EG∥AC,AC⊂平面α,所以EG∥α,又因为α∥β,所以EG∥β.同理可得GF∥BD,而BD⊂β.所以GF∥β,因为EG∩GF=G,所以平面EGF∥β.又因为EF⊂平面EGF,所以EF∥β.综合(1)(2)得EF∥平面β.