2.2.4平面与平面平行的性质
复习平面与平面平行的判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。定理的推论如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行
思考如果两个平面平行,那么一个平面内的直线与另一个平面的直线具有什么位置关系?ADCBD1A1B1C1
平面与平面平行的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∥∥面面平行→线面平行
1、若两个平面互相平行,则其中一个平面中的直线必平行于另一个平面;2、平行于同一平面的两平面平行;3、过平面外一点有且只有一个平面与这个平面平行;4、夹在两平行平面间的平行线段相等。
例题分析例1、求证:夹在两个平行平面间的两条平行线段相等αβDBAC已知:如图,AB∥CD,A∈α,D∈α,B∈β,C∈β,求证:AB=CD
例题分析例1、如果一条直线与两个平行平面中的一个相交,那么它与另一个也相交。.Alαβl.AαβB.γab
1、如图:a∥α,A是α另一侧的点,B、C、D是α上的点,线段AB、AC、AD交于E、F、G点,若BD=4,CF=4,AF=5,求EG.αaACBDEGF练习:
练习:A1B1C1D1ABCD2、棱长为a的正方体AC1中,设M、N、E、F分别为棱A1B1、A1D1、C1D1、B1C1的中点.(1)求证:E、F、B、D四点共面;(2)求证:面AMN∥面EFBD.MNEF
3、点P在平面VAC内,画出过点P作一个截面平行于直线VB和AC。VACBPFEGH练习:
小结面面平行判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行面面平行性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行。线面平行面面平行面面平行线面平行
课外作业:1、已知α∥β,AB交α、β于A、B,CD交α、β于C、D,AB∩CD=S,AS=8,BS=9,CD=34,求SC。αβADCBSαβCBSAD
HO例3、已知ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,画出过G和AP的平面。ACBDGPM