河北武邑中学课堂教学设计备课人授课时间课题§2.3.1直线与平面垂直的判定教知识与技能使学生掌握判定直线和平面垂直的方法;学过程与方法启发引导,充分发挥学生的主体作用目培养学生学会从“感性认识”到“理性认识”过程中获取新标情感态度价值观知重点直线与平面垂直的定义和判定定理的探究。难点直线与平面垂直的定义和判定定理的探究。教学环节与活动设教学内容计(一)创设情景,揭示课题1、教师首先提出问题:在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆与地面,大桥的桥柱教学设计和水面等的位置关系”,你能举出一些类似的例子吗?然后让学生回忆、思考、讨论、教师对学生的活动给予评价。2、接着教师指出:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地面上的射影的位置关系引出课题内容。(二)研探新知1、为使学生学会从“感性认识”到“理性认识”过程中获取新知,可再借助长方体模型让学生感知直线与平面的垂直关系。然后教师引导学生用“平面化”的思想来思考问题:从直线与直线垂直、直线与平面平行教教学内容教学环节与活动设计第1页
学等的定义过程得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线与这个平面垂直呢?并组织学生交流设讨论,概括其定义。计如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图2.3-1,直线与平面垂直时,它们唯一公共点P叫做垂足。并对画示表示进行说明。LPα2、老师提出问题,让学生思考:(1)问题:虽然可以根据定义判定直线与平面垂直,但这种方法实际上难以实施。有没有比较方便可行的方法来判断直线和平面垂直呢?(2)师生活动:请同学们准备一块三角形的纸片,我们一起来做如图2.3-2试验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),问如何翻折才能保证折痕AD与桌面所在平面垂直?ABDC(3)归纳结论:引导学生根据直观感知及已有经验(两条相交直线确定一个平面),进行合情推理,获得判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直教学环节与活动教教学内容设计第2页
学设计线与此平面垂直。老师特别强调:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。(三)实际应用,巩固深化(1)课本P65例1教学直线与平面所成的角:课本P66(2)课本P66例2教学(四)归纳小结,课后思考小结:采用师生对话形式,完成下列问题:①请归纳一下获得直线与平面垂直的判定定理的基本过程。②直线与平面垂直的判定定理,体现的教学思想方法是什么?课后作业:①课本P67练习1,3②求证:如果一条直线平行于一个平面,那么这个平面的任何垂线都和这条直线垂直。思考题:如果一条直线垂直于平面内的无数条直线,那么这条直线就和这个平面垂直,这个结论对吗?为什么?教学直线与平面垂直的定义和判定定理的探究。小结课后反思第3页