2.3.1直线与平面垂直的判定第一课时直线与平面垂直的概念和判定
复习引入:1.直线和平面的位置关系是什么?(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)在直线和平面相交的位置关系中,有一种相交是很特殊的,我们把它叫做垂直相交,这节课我们重点来探究这种形式的相交
观察实例,发现新知旗杆与地面的关系,给人以直线与平面垂直的形象。
大桥的桥柱与水面垂直
一条直线与一个平面垂直的意义是什么?AαBB1C1CB旗杆AB所在直线与地面内任意一条过点B的直线垂直.与地面内任意一条不过点B的直线B1C1也垂直.直线垂直于平面内的任意一条直线.知识探究(一):直线与平面垂直的概念
如果直线l与平面内的任意一条直线都垂直,我们说直线l与平面互相垂直。记作.平面的垂线直线l的垂面垂足直线与平面垂直的定义:直线与平面的一条边垂直
1.如果一条直线l和一个平面内的无数条直线都垂直,则直线l和平面α互相垂直()思考:BCl线线垂直 线面垂直性质定理直线l垂直于平面α,则直线l垂直于平面α中的任意一条直线
知识探究(二):直线与平面垂直的判定对于一条直线和一个平面,如果根据定义来判断它们是否垂直,需要解决什么问题?
除定义外,如何判定一条直线与平面垂直呢?如图,准备一块三角形的纸片,做一个试验:过的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC于桌面接触)当且仅当折痕AD是BC边上的高时,AD所在直线与桌面所在平面垂直.知识探究(二):直线与平面垂直的判定
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.直线与平面垂直判定定理判定定理线线垂直 线面垂直
1、如果平面外的一条直线上有两点到这个平面的距离相等,则这条直线和平面的位置关系是()A.平行B.相交C.平行或相交2、在空间,下列命题正确的是( )(1)平行于同一直线的两条直线互相平行;(2)垂直于同一直线的两条直线互相平行;(3)平行于同一平面的两条直线互相平行;(4)垂直于同一平面的两条直线互相平行。A.(1)(3)(4)B.(1)(4)C.(1)D.四个命题都正确。CB理论迁移
理论迁移3、已知.求证:αabcd
4、在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,PA=AB,D为PB的中点,求证:AD⊥PC.PABCD
探究:侧棱与底面垂直的棱柱称为直棱柱.在直四棱柱ABCD-A1B1C1D1中,当底面四边形ABCD满足什么条件时,有A1C⊥B1D1,说明你的理由.AA1BCDB1C1D1
,(3)1、直线与平面垂直的定义2、直线与平面垂直的判定与性质小结
作业P67练习:1.P74习题2.3B组:2,4.
1.平行四边形ABCD所在平面a外有一点P,且PA=PB=PC=PD,求证:点P与平行四边形对角线交点O的连线PO垂直于AB、AD.CABDOP补充练习
EABCD
pABC