直线和平面垂直的判定(2)鹿邑三高史琳
教学目标:1.进一步掌握线面垂直的定义和判定定理;2.掌握直线和平面所成的角的概念,会求直线和平面所成的角.
复习引入1.直线与平面垂直的定义如果直线l与平面α的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作l⊥α.2.直线与平面垂直的判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。3.作业讲评:P67页练习第1题VABC
引课我们知道,当直线和平面垂直时,该直线叫做平面的垂线。如果直线和平面不垂直,是不是也该给它取个名字呢?此时又该如何刻画直线和平面的这种关系呢?直线与平面所成的角
1.平面的斜线如图,若一条直线PA和一个平面α相交,但不垂直,那么这条直线就叫做这个平面的斜线,斜线和平面的交点A叫做斜足。PA斜足斜线
2.直线和平面所成的角如图,过斜线上斜足以外的一点向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角。斜线斜足射影垂足垂线一条直线垂直于平面,我们说它所成的角是直角;一条直线和平面平行,或在平面内,我们说它所成的角是00的角。规定:想一想:直线与平面所成的角θ的取值范围是什么?
APO斜线垂线一条直线垂直于平面,它们所成的角是直角一条直线和平面平行,或在平面内,它们所成的角是0的角直线和平面所成角的范围是[0,90]第2个空间角斜线在平面上的射影平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角
A1B1C1D1ABCD例1、如图,正方体ABCD-A1B1C1D1中,求(1)直线A1B和平面BCC1B1所成的角。(2)直线A1B和平面A1B1CD所成的角。O例题示范,巩固新知分析:找出直线A1B在平面BCC1B1和平面A1B1CD内的射影,就可以求出A1B和平面BCC1B1和平面A1B1CD所成的角。阅读教科书P67上的解答过程
例2 已知APaO斜线垂线斜线在平面上的射影ACBADCBD分别指出对角线A1C与六个面所成的角.找垂线得射影
巩固练习1.判断下列说法是否正确(1)两条平行直线在同一平面内的射影一定是平行直线()(2)两条相交直线在同一平面内的射影一定是相交直线()(3)两条异面直线在同一平面内的射影要么是平行直线,要么是相交直线()(4)若斜线段长相等,则它们在平面内的射影长也相等()
AC1DCA1D1BF例3 在正方体ABCD—A1B1C1D1中,求直线A1B与平面A1B1CD所成的角AC1DCBP变式:(1)求直线AC与平面A1B1CD所成的角(2)E,F分别是BC,CC1的中点,求EF与面ACC1A1所成的角.B1A1D1QB1EO练习1.两直线与一个平面所成的角相等,它们平行吗?2.两平行直线和一个平面所成的角相等吗?
2.如图:正方体ABCD-A1B1C1D1中,求:(1)AB1在面BB1D1D中的射影(2)AB1在面A1B1CD中的射影(3)AB1在面CDD1C1中的射影A1D1C1B1ADCB巩固练习
2.如图:正方体ABCD-A1B1C1D1中,求:(1)AB1在面BB1D1D中的射影(2)AB1在面A1B1CD中的射影(3)AB1在面CDD1C1中的射影A1D1C1B1ADCBO线段B1O巩固练习
2.如图:正方体ABCD-A1B1C1D1中,求:(1)AB1在面BB1D1D中的射影(2)AB1在面A1B1CD中的射影(3)AB1在面CDD1C1中的射影A1D1C1B1ADCBE线段B1E巩固练习
2.如图:正方体ABCD-A1B1C1D1中,求:(1)AB1在面BB1D1D中的射影(2)AB1在面A1B1CD中的射影(3)AB1在面CDD1C1中的射影A1D1C1B1ADCB线段C1D巩固练习
3.如图:正方体ABCD-A1B1C1D1中,求:(1)A1C1与面ABCD所成的角(2)A1C1与面BB1D1D所成的角(3)A1C1与面BB1C1C所成的角(4)A1C1与面ABC1D1所成的角A1D1C1B1ADCB0o巩固练习
3.如图:正方体ABCD-A1B1C1D1中,求:(1)A1C1与面ABCD所成的角(2)A1C1与面BB1D1D所成的角(3)A1C1与面BB1C1C所成的角(4)A1C1与面ABC1D1所成的角A1D1C1B1ADCB90o巩固练习
3.如图:正方体ABCD-A1B1C1D1中,求:(1)A1C1与面ABCD所成的角(2)A1C1与面BB1D1D所成的角(3)A1C1与面BB1C1C所成的角(4)A1C1与面ABC1D1所成的角A1D1C1B1ADCB45o巩固练习
3.如图:正方体ABCD-A1B1C1D1中,求:(1)A1C1与面ABCD所成的角(2)A1C1与面BB1D1D所成的角(3)A1C1与面BB1C1C所成的角(4)A1C1与面ABC1D1所成的角A1D1C1B1ADCBE30o巩固练习
练习
归纳小结1.直线与平面垂直的概念(1)利用定义;(2)利用判定定理.3.数学思想方法:转化的思想空间问题平面问题3.直线与平面垂直的判定线线垂直线面垂直垂直于平面内任意一条直线2.线面角的概念及范围
作业布置作业:P74 A组9题,B组4题