高中数学人教A版必修2 第二章 点、直线、平面之间的位置关系 2.3.1直线与平面垂直的判定 课件
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2.3.1直线与平面垂直的判定 《直线与平面垂直的判定》一、背景分析二、教学目标分析三、课堂结构设计四、教学媒体设计五、教学过程设计六、教学评价设计 一、背景分析数学思想方法:转化、归纳、类比、猜想等,发展学生的合情推理能力和空间想象力,培养学生的质疑思辨、创新的精神.教学重点:操作确认并概括出直线与平面垂直的定义和判定定理.学习线面垂直的定义、判定定理及其初步运用.线与线垂直线与面垂直面与面垂直1.学习任务分析2.学生情况分析1.学习任务分析 2.学生情况分析思维活跃,参与意识、自主探究能力有所提高,具备学习本节课所需的知识,可采用“类比”方法学习.教学难点:操作确认并概括出直线与平面垂直的定义和判定定理.2.学生情况分析1.学习任务分析一、背景分析抽象概括能力、空间想象力有待提高. 二、教学目标分析1.《课程标准》2.本节课目标1.《课程标准》(1)通过直观感知、操作确认,归纳出直线与平面垂直的判定定理.(2)能运用直线与平面垂直的判定定理证明一些空间位置关系的简单命题. 二、教学目标分析(1)借助对图片、实例的观察,抽象概括出线面垂直的定义,并能正确理解定义.(2)通过直观感知,操作确认,归纳出线面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念.(3)让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣.1.《课程标准》2.本节课目标2.本节课目标 创设情境—感知概念观察归纳—形成概念辨析讨论—深化概念尝试练习—巩固定理三、课堂结构设计分析实例—猜想定理动手操作—确认定理质疑反思—深化定理线面垂直判定定理的探究线面垂直定义的建构线面垂直判定定理的初步应用总结反思—提高认识布置作业—自主探究(约需10分钟)(约需20分钟)(约需8分钟)(约需5分钟)(约需2分钟) 四、教学媒体设计1.多媒体辅助教学2.学生自备学具:三角形纸片铁丝、三角板3.设计科学合理的板书 2.3.1直线与平面垂直的判定(一)练习1:练习2:练习3:1.直线与平面垂直的定义:四、教学媒体设计2.直线与平面垂直的判定定理: 五、教学过程设计线面垂直定义的建构线面垂直判定定理的探究线面垂直判定定理的应用总结反思—提高认识布置作业—自主探究线面垂直定义的建构创设情境—感知概念观察归纳—形成概念辨析讨论—深化概念 (1)创设情境—感知概念思考:如何定义一条直线与一个平面垂直?1.线面垂直定义的建构 ABα(2)观察归纳—形成概念动画演示1.线面垂直定义的建构讨论:能否用一条直线垂直于一个平面内直线,来定义这条直线与这个平面垂直呢? (2)观察归纳—形成概念1.线面垂直定义的建构 αa.P1.线面垂直定义的建构(2)观察归纳—形成概念直线与平面垂直的定义如果直线a与平面α内的任意一条直线都垂直,我们就说直线a与平面α互相垂直,记作:a⊥α.直线a叫做平面α的垂线,平面α叫做直线a的垂面.直线与平面垂直时,它们惟一的公共点P叫做垂足. bαa1.线面垂直定义的建构(3)辨析讨论—深化概念判断正误:①如果一条直线垂直于一个平面内的无数条直线,那么,这条直线就与这个平面垂直。②若a⊥α,bα,则a⊥b。 五、教学过程设计线面垂直定义的建构线面垂直判定定理的探究线面垂直判定定理的应用总结反思—提高认识布置作业—自主探究线面垂直判定定理的探究分析实例—猜想定理动手操作—确认定理质疑反思—深化定理 (1)分析实例—猜想定理2.线面垂直判定定理的探究问题①在长方体ABCD-A1B1C1D1中,棱BB1与底面ABCD垂直。观察BB1与AB、BC的位置关系,由此你认为保证BB1⊥底面ABCD的条件是什么?D1C1BACDB1A1D (1)分析实例—猜想定理问题②如何将一张长方形贺卡直立于桌面?由此,你能猜想出判断一条直线与一个平面垂直的方法吗?2.线面垂直判定定理的探究猜想:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 2.线面垂直判定定理的探究(2)动手操作—确认定理实验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上,(BD、DC与桌面接触).DCBA 2.线面垂直判定定理的探究(2)动手操作—确认定理问题③折痕AD与桌面垂直吗?如何翻折才能使折痕AD与桌面所在的平面垂直?问题④由折痕AD⊥BC,翻折之后垂直关系,即AD⊥CD,AD⊥BD发生变化吗?由此你能得到什么结论?动画演示 2.线面垂直判定定理的探究(2)动手操作—确认定理问题③折痕AD与桌面垂直吗?如何翻折才能使折痕AD与桌面所在的平面垂直? 2.线面垂直判定定理的探究(2)动手操作—确认定理问题④由折痕AD⊥BC,翻折之后垂直关系,即AD⊥CD,AD⊥BD发生变化吗?由此你能得到什么结论? 2.线面垂直判定定理的探究(2)动手操作—确认定理直线与平面垂直的判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。mnPl 2.线面垂直判定定理的探究(3)质疑反思—深化定理问题⑤如果一条直线与平面内的两条平行直线都垂直,那么该直线与此平面垂直吗?bαa 3.线面垂直判定定理的应用练习(1)如图(1)有一根旗杆AB高8m,它的顶端A挂有两条长10m的绳子,拉紧绳子并把它的下端放在地面上的两点(和旗杆脚不在同一条直线上)C、D。如果这两点都和旗杆脚B的距离是6m,那么旗杆就和地面垂直,为什么?练习(3)如图(3),已知a∥b,a⊥α,求证:b⊥α(1)ABCD(3)bamn(2)ABCa练习(2)如图(2),已知△ABC在平面α内,直线a与平面α相交,且a⊥AC,a⊥BC.求证:a⊥AB (1)通过本节课的学习,你学会了哪些判断直线与平面垂直的方法?(2)在证明直线与平面垂直时应注意哪些问题?(3)本节课你还有哪些问题?4.总结反思—提高认识 4.总结反思—提高认识“平面化”是解决立体几何问题的一般思路。直线与平面垂直的判定方法如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面。定义:如果一条直线垂于一个平面内的任何一条直线,则此直线垂直于这个平面.判定定理:如果一条直线垂直于一个平面内的两条相交直线,那么此直线垂直于这个平面。 5.布置作业—自主探究(1)如图,点P是平行四边形ABCD所在平面外一点,O是对角线AC与BD的交点,且PA=PCPB=PD.求证:PO⊥平面ABCDCABDOPPABCO(3)探究:PA⊥⊙o所在平面,AB是⊙o的直径,C是圆周上一点,则图中有几个直角三角形?由此你认为三棱锥中最多有几个直角三角形?四棱锥呢?(2)课本P74练习2 六、教学评价设计1.关注学生在探究学习过程中的表现:包括学生的投入程度和思维水平的发展.2.通过练习检测学生对知识的掌握情况可能出现问题:几何作图不够直观、符号语言表述不清、推理论证不够严密等.3.根据学生在课堂小结中的表现和课后作业情况,查缺补漏. 谢谢

10000+的老师在这里下载备课资料