2.3.1直线与平面垂直的判定一、选择题1.下列命题中正确的个数是( )①如果直线l与平面α内的无数条直线垂直,则l⊥α;②如果直线l与平面α内的一条直线垂直,则l⊥α;③如果直线l不垂直于α,则α内没有与l垂直的直线;④如果直线l不垂直于α,则α内也可以有无数条直线与l垂直.A.0B.1C.2D.32.直线a⊥直线b,b⊥平面β,则a与β的关系是( )A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是( )A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为( )A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5.如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为( )A.4B.3C.2D.16.从平面外一点向平面引一条垂线和三条斜线,斜足分别为A,B,C,如果这些斜线与平面成等角,有如下命题:①△ABC是正三角形;②垂足是△ABC的内心;③垂足是△ABC的外心;④垂足是△ABC的垂心.其中正确命题的个数是( )A.1B.2C.3D.4二、填空题7.在正方体ABCD-A1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是________.8.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).9.如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=________.
三、解答题10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.11.如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB,PC的中点,PA=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.能力提升12.如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证B1O⊥平面PAC.13.如图所示,△ABC中,∠ABC=90°,SA⊥平面ABC,过点A向SC和SB引垂线,垂足分别是P、Q,求证:(1)AQ⊥平面SBC;
(2)PQ⊥SC.1.运用化归思想,将直线与平面垂直的判定转化为直线与平面内两条相交直线的判定,而同时还由此得到直线与直线垂直.即“线线垂直⇔线面垂直”.2.直线和平面垂直的判定方法(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.3.线线垂直的判定方法(1)异面直线所成的角是90°.(2)线面垂直,则线线垂直.§2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定答案知识梳理1.(1)任意一条 垂直 l⊥α 垂线 垂面(2)两条相交直线 a⊂α b⊂α a∩b=A2.(1)射影 锐角 ∠PAO(2)0° [0°,90°]作业设计1.B [只有④正确.]2.D3.C [取BD中点O,连接AO,CO,则BD⊥AO,BD⊥CO,∴BD⊥面AOC,BD⊥AC,又BD、AC异面,∴选C.]4.B [易证AC⊥面PBC,所以AC⊥BC.]5.A [⇒⇒BC⊥平面PAC⇒BC⊥PC,
∴直角三角形有△PAB、△PAC、△ABC、△PBC.]6.A [PO⊥面ABC.则由已知可得,△PAO、△PBO、△PCO全等,OA=OB=OC,O为△ABC外心.只有③正确.]7.(1)45° (2)30° (3)90°解析 (1)由线面角定义知∠A1BA为A1B与平面ABCD所成的角,∠A1BA=45°.(2)连接A1D、AD1,交点为O,则易证A1D⊥面ABC1D1,所以A1B在面ABC1D1内的射影为OB,∴A1B与面ABC1D1所成的角为∠A1BO,∵A1O=A1B,∴∠A1BO=30°.(3)∵A1B⊥AB1,A1B⊥B1C1,∴A1B⊥面AB1C1D,即A1B与面AB1C1D所成的角为90°.8.∠A1C1B1=90°解析 如图所示,连接B1C,由BC=CC1,可得BC1⊥B1C,因此,要证AB1⊥BC1,则只要证明BC1⊥平面AB1C,即只要证AC⊥BC1即可,由直三棱柱可知,只要证AC⊥BC即可.因为A1C1∥AC,B1C1∥BC,故只要证A1C1⊥B1C1即可.(或者能推出A1C1⊥B1C1的条件,如∠A1C1B1=90°等)9.90°解析 ∵B1C1⊥面ABB1A1,∴B1C1⊥MN.又∵MN⊥B1M,∴MN⊥面C1B1M,∴MN⊥C1M.∴∠C1MN=90°.10.证明 在平面B1BCC1中,∵E、F分别是B1C1、B1B的中点,∴△BB1E≌△CBF,∴∠B1BE=∠BCF,∴∠BCF+∠EBC=90°,∴CF⊥BE,又AB⊥平面B1BCC1,CF⊂平面B1BCC1,∴AB⊥CF,AB∩BE=B,∴CF⊥平面EAB.11.证明 (1)∵PA⊥底面ABCD,
∴CD⊥PA.又矩形ABCD中,CD⊥AD,且AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD.(2)取PD的中点G,连接AG,FG.又∵G、F分别是PD,PC的中点,∴GF綊CD,∴GF綊AE,∴四边形AEFG是平行四边形,∴AG∥EF.∵PA=AD,G是PD的中点,∴AG⊥PD,∴EF⊥PD,∵CD⊥平面PAD,AG⊂平面PAD.∴CD⊥AG.∴EF⊥CD.∵PD∩CD=D,∴EF⊥平面PCD.12.证明 连接AB1,CB1,设AB=1.∴AB1=CB1=,∵AO=CO,∴B1O⊥AC.连接PB1.∵OB=OB2+BB=,PB=PD+B1D=,OP2=PD2+DO2=,∴OB+OP2=PB.∴B1O⊥PO,又∵PO∩AC=O,∴B1O⊥平面PAC.13.证明 (1)∵SA⊥平面ABC,BC⊂平面ABC,∴SA⊥BC.又∵BC⊥AB,SA∩AB=A,∴BC⊥平面SAB.又∵AQ⊂平面SAB,∴BC⊥AQ.又∵AQ⊥SB,BC∩SB=B,∴AQ⊥平面SBC.(2)∵AQ⊥平面SBC,SC⊂平面SBC,∴AQ⊥SC.又∵AP⊥SC,AQ∩AP=A,
∴SC⊥平面APQ.∵PQ⊂平面APQ,∴PQ⊥SC.