高中数学人教A版必修2 第二章 点、直线、平面之间的位置关系 2.3.1直线与平面垂直的判定 教学设计与反思
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
直线与平面垂直的判定”教学设计与反思一、内容和内容解析直线与平面垂直的定义:如果一条直线与一个平面内的任意一条直线都垂直,就称这条直线与这个平面互相垂直。定义中的“任意一条直线”就是“所有直线”。定义木身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线。直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。该定理把原来定义中要求与任意一条(无限)直线垂直转化为只要与两条(有限)相交直线柬直就行了,使直线与平面垂直•的判定简捷而又具有可操作性。对直线与平面垂直的定义的研究遵循“直观感知、抽象概括”的认知过程展开,而对直线与平面垂直的判定的研究则遵循“直观感知、操作确认、归纳总结、初步运用”的认知过程展开,通过该内容的学习,进一步培养学生空间想象能力和几何直观能力,发展学生的含情推理能力、一定的推理论证能力和运用图形语言进行交流的能力。教学重点:直观感知、操作确认,概括出直线与平面柬直的定义和判定定理。二、教学目标教学目标:理解直线与平面垂直的意义,掌握直线与平面垂直的判定定理。三、教学问题诊断分析学生已经学习了直线、平面平行的判定及性质,学习了两直线(共面或异面)互相垂直的位置关系,有了“通过观察、操作并抽象概括等活动获得数学结论”的体会,有了一定的空间想象能力、几何直观能力和推理论证能力。在直线与平面垂直的判定定理中,学生对为什么要且只要两条相交直线的理解有一定的困难,因为定义中“任一条直线”指的是“所有直线”,这种用“有限”代替“无限"的过程导致学生形成理解上的思维障碍。教学难点:操作确认并概括出直线与平面垂直的判定定理及其初步运用。四、教学支持条件分析为了有效实现教学目标,条件许可准备投影仪,多媒体课件,三角板,教鞭(表直线)。学生自备学具:三角形纸片、三角板、笔(表直线)、课本(表平面)。五、教学过程设计(一)、观察归纳直线与平面垂直的定义1、直观感知问题1:请同学们观察图片,说出旗杆与地面、大桥桥柱与水面是什么位置关系?你能举出一些类似的例子吗?设计意图:从实际背景出发,直观感知直线和平面垂直的位置关系,从而建立初步印象,为下一少的数学抽象做准备。2、观察归纳思考1:直线和平面垂直的意义是什么?我们己经学过直线和平面平行的判定和性质,知道直线和平面平行的问题可转化为考察直线和平面内直线平行的关系,直线和平面垂直的问题同样E以转化为考察直线和平面内直线的关系。问题2:(1)在阳光下观察直立于地面旗杆AB及它在地面的影了BC,旗杆所在的直线与影了所在直线的位置关系是什么?(2)旗杆AB与地面上任意一条不过旗杆底部B的直线V。的位置关系又是什么? 由此可以得到什么结论?设计意图:引导学生用“平面化”与“降维”的思想来思考问题,通过观察思考,感知直线与平面垂直的本质内涵。问题3:AC.AD是用来固定旗杆AB的铁链,它们与地面内任意一条直线都垂直吗?设计意图:通过反面剖析,进一步感悟直线与平面垂直的本质。问题4、通过上述观察分析,你认为应该如何定义一条直线与一个平面垂直?设计意图:让学生归纳、概括出直线与平面垂直的定义。定义:如果直线7与平面«内的任意一条直线都垂直,我们就说直线7与平面互相垂直,记作:7±«.直线[叫做平面a的垂线,平面a叫做直线/的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足。画法:画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直,如图3。3、辨析讨论辨析1:下列命题是否正确,为什么?(1)如果一条直线垂直于一个平面内的无数条直线,那么这条直线与这个平面垂直。(2)如果一条直线垂直一个平面,那么这条直线就垂直于这个平面内的任一直线。设计意图:通过问题辨析与讨论,加深概念的理解,掌握概念的本质属性。由(1)使学生明确定义中的“任意一条直线”是“所有直线”的意思。由(2)使学生明确,直线与平面垂直的定义既是判定又是性质,“直线与直线垂直”和“直线与平面垂直”可以相互转化。(二)、探究发现直线与平面垂直的判定定理1、分析实例思考2:我们该如何检验学校广场上的旗杆是否与地面垂直?虽然可以根据直线与平面垂直的定义判定直线与平面垂直,但由于利用定义判定直线与平面垂直需要考察平面内的每一条直线与已知宜线是否垂直,这种方•法实际上难以实施,因为我们无法去一一检验。因而有必要寻找一个便捷、可行的判断直线和平面垂直的方法。问题5、观察跨栏、简易木架等实物,你认为其竖杆能竖直立于地面的原因是什么?设计意图:通过图片观察思考,感知判定直线与平面垂直时只需平面内有限条直线(两条相交直线),从中体验有限与无限之间的辩证关系。2、操作确认实验:请同学们拿出准备好的一块(任意)三角形的纸片,我们一起来做一个试验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上,(BD、DC与桌面接触).(1)折痕AD与桌面垂直吗?(2)如何翻折才能使折痕AD与桌面所在的平面垂直?设计意图:通过观察试验,分析折痕AD与桌面不垂直的原因,探究发现折痕AD与桌面垂直的条件。问题:由折痕AD1BC,翻折之后垂直关系,即AD1CD,AD1BD发生变化吗?由此你能得到什么结论?设计意图:引导学生发现折痕AD与桌面垂直的条件:AD垂直桌面内两条相交直线。定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。用符号语言表示为: 3、质疑深化辨析2:下列命题是否正确,为什么?如果一条直线与一个梯形的两条边垂直,那么这条直线垂直于梯形所在的平面。设计意图:通过辨析,强化定理中“两条相交直线”的条件。(三)、初步应用例1、求证:与三角形的两条边同时垂直的直线必与第三条边垂直。设计意图:初步感受如何运用直线与平面垂直的判定定理与定义解决问题,明确运用判定定理的条件。例2、己知a〃b,a±a,求证:b_La设计意图:进一步感受如何运用直线与平面垂直的判定定理或用定义证明直线与平面垂直,体会空间中平行关系与推直关系的转化与联系。练习.在正方体ABCD-ABCD中,E、F分别是AAi、CG的中点,判断下列结论是否正确:①AC1U&JCDDiCi②ACJ_面BDDiBl③EFJ_面BDDBi④AC1BD!设计意图:利用所学知识解决直线与平面垂直的有关问题,体会转化思想在解决问题中的作用。其中①是定义的应用,②是判定定理的应用,③是例2结论的应用,④是判定定理与定义的应用。(四)、总结反思(1)通过本节课的学习,你学会了哪些判断直线与平面垂直的方法?(2)上述判断直线与平面垂直的方法体现了什么数学思想?(3)关于直线与平面垂直你还有什么问题?设计意图:培养学生反思的习惯,鼓励学生对问题进行质疑和概括。六、目标检测设计1、点P是平行四边形ABCD所在平面外一点,。是对角线AC与BD的交点,且PA=PC,PB=PD.求证:PO_L平面ABCDo2、课木P74练习13、课本P73探究题4、设计一个检验学校广场上的旗杆是否与地面垂直的方案,写出实施步骤和依据。设计意图:通过训练,巩固本课所学知识,感悟其中蕴涵的转化数学思想,增强学生的应用意识。其中第1题主要运用直线与平面推直的判定定理,第2、3题是活用直线与平面垂直的定义与判定定理,第4题前后呼应,为解决课中给出的问题提供各种方案,是本课所学知识的实际应用。

10000+的老师在这里下载备课资料