直线、平面垂直的判定与性质考点一证明两直线的垂直关系 1.如图,直三棱柱ABCA1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD.(1)证明:DC1⊥BC;(2)求二面角A1BDC1的大小.2.如图所示,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角APBC的余弦值.
3.如图,已知四棱锥PABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点.(1)证明:PE⊥BC;(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.
考点二线面垂直的判定及性质的应用 1.如图①,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=,O为BC的中点.将△ADE沿DE折起,得到如图②所示的四棱锥A′BCDE,其中A′O=.(1)证明:A′O⊥平面BCDE;(2)求二面角A′CDB的平面角的余弦值.2.如图,在三棱柱ABC-A1B1C1中,BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D为B1C1的中点.(1)证明:A1D⊥平面A1BC.(2)求二面角A1-BD-B1的平面角的余弦值.
考点三两个平面垂直的判定及性质的应用 1.如图所示,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC;(2)若PA=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.
2.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD,(1)证明:平面AEC⊥平面BED.(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为,求该三棱锥的侧面积.考点四线、面垂直关系中探索性问题的解法 1.在三棱柱ABCA1B1C1中,已知AB=AC=AA1=,BC=4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值.
2.如图所示,在三棱锥PABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角AMCB为直二面角?若存在,求出AM的长;若不存在,请说明理由.