人民教育出版社高中必修2畅言教育《2.3.2平面与平面垂直的判定》提高练习本课时编写:成都市第二十中学付江平一、选择题1.下列命题中:①两个相交平面组成的图形叫做二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角;④二面角的大小与其平面角的顶点在棱上的位置没有关系,其中正确的是( )A.①③B.②④C.③④D.①②2.如图,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有( )用心用情服务教育5
人民教育出版社高中必修2畅言教育A.AH⊥△EFH所在平面B.AG⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面3.已知α,β是平面,m、n是直线,给出下列表述:①若m⊥α,m⊂β,则α⊥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③如果m⊂α,n⊄α,m,n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.其中表述正确的个数是( )A.1B.2C.3D.44.在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论中不成立的是( )A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面ABCD.平面PAE⊥平面ABC二、填空题5.在三棱锥P-ABC中,PA=PB=AC=BC=2,PC=1,AB=2,则二面角P-AB-C的大小为________.6.(1)若一个二面角的两个半平面分别平行于另一个二面角的两个半平面,则这两个二面角的关系是________.(2)若一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角大小关系为________.7.如图,四边形ABCD是正方形,PA⊥平面ABCD,且PA=AB=a;则二面角A-PD-C的度数为_________.用心用情服务教育5
人民教育出版社高中必修2畅言教育[来源:学|科|网Z|X|X|K]8.正方体A1B1C1D1-ABCD中,截面A1BD与底面ABCD所成二面角A1-BD-A的正切值等于_________.三、解答题9.如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=.证明:平面PBE⊥平面PAB;10.如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=a,(1)求证:PD⊥平面ABCD;[来源:Z.Com](2)求证:平面PAC⊥平面PBD;(3)求二面角P-AC-D的正切值.[来源:学#科#网Z#X#X#K]用心用情服务教育5
人民教育出版社高中必修2畅言教育参考答案一、选择题1.B【解析】对①,显然混淆了平面与半平面的概念,是错误的;对②,由于a,b分别垂直于两个面,所以也垂直于二面角的棱,但由于异面直线所成的角为锐角(或直角),所以应是相等或互补,是正确的;对③,因为不垂直于棱,所以是错误的;④是正确的,故选B.2.A【解析】由平面图得:AH⊥HE,AH⊥HF,∴AH⊥平面HEF,∴选A.3.B【解析】①是平面与平面垂直的判定定理,所以①正确;②中,m,n不一定是相交直线,不符合两个平面平行的判定定理,所以②不正确;③中,还可能n∥α,所以③不正确;④中,由于n∥m,n⊄α,m⊂α,则n∥α,同理n∥β,所以④正确.4.C【解析】可画出对应图形,如图所示,则BC∥DF,又DF⊂平面PDF,BC⊄平面PDF,∴BC∥平面PDF,故A成立;由AE⊥BC,PE⊥BC,BC∥DF,知DF⊥AE,DF⊥PE,∴DF⊥平面PAE,故B成立;又DF⊂平面ABC,∴平面ABC⊥平面PAE,故D成立.二、填空题5.60°【解析】取AB中点M,连接PM,MC,则PM⊥AB,CM⊥AB,[来源:Z.Com]∴∠PMC就是二面角P-AB-C的平面角.在△PAB中,PM==1,同理MC=1,则△PMC是等边三角形,∴∠PMC=60°.6.(1)相等或互补 (2)不定【解析】(2)易误答相等或互补,想象门的开关,构造符合题意的模型即可.7.90°【解析】PA⊥平面ABCD,∴PA⊥CD.又四边形ABCD为正方形,∴CD⊥AD,∴CD⊥平面PAD,又CD⊂平面PCD,∴平面PAD⊥平面PCD,∴二面角A-PD-C为90°.8.【解析】设AC、BD交于O,连A1O,∵BD⊥AC,BD⊥AA1,∴BD⊥平面AA1O,∴BD⊥A1O,用心用情服务教育5
人民教育出版社高中必修2畅言教育∴∠A1OA为二面角的平面角,tan∠A1OA==.三、解答题9.证明:如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD,又AB∥CD,所以BE⊥AB,又因为PA⊥平面ABCD,BE⊂平面ABCD,所以PA⊥BE.而PA∩AB=A,因此BE⊥平面PAB.又BE⊂平面PBE,所以平面PBE⊥平面PAB.10.证明:(1)∵PD=a,DC=a,PC=a,∴PC2=PD2+DC2,∴PD⊥DC.同理可证PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD.(2)由(1)知PD⊥平面ABCD,∴PD⊥AC,而四边形ABCD是正方形,∴AC⊥BD,又BD∩PD=D,∴AC⊥平面PDB.同时,AC⊂平面PAC,∴平面PAC⊥平面PBD.(3)设AC∩BD=O,连接PO.由PA=PC,知PO⊥AC.又由DO⊥AC,故∠POD为二面角P-AC-D的平面角.易知OD=a.在Rt△PDO中,tan∠POD===.用心用情服务教育5