第二课时平面与平面垂直2.3.2平面与平面垂直的判定
问题提出1.二面角与二面角的平面角分别是什么含义?二面角的平面角有哪几个基本特征?(1)顶点在棱上;(2)边在两个面内;(3)边垂直于棱.
平面与平面垂直2.直线与直线,直线与平面可以垂直,平面与平面是否存在垂直关系?如何认识两个平面垂直?我们从理论上作些探讨.
知识探究(一):两个平面垂直的概念思考1:空间两条直线垂直是怎样定义的?直线与平面垂直是怎样定义的?思考2:什么叫直二面角?如果两个相交平面所成的四个二面角中,有一个是直二面角,那么其他三个二面角的大小如何?
思考3:如果两个相交平面所成的二面角是直二面角,则称这两个平面互相垂直.在你的周围或空间几何体中,有哪些实例反映出两个平面垂直?
思考4:在图形上,符号上怎样表示两个平面互相垂直?αβαβ
αβ思考5:如果平面α⊥平面β,那么平面α内的任一条直线都与平面β垂直吗?
知识探究(二):两个平面垂直的判定思考1:根据定义判断两个平面是否垂直需要解决什么问题?思考2:如图,∠AOB为直二面角Α-l-β的平面角,那么直线AO与平面α的位置关系如何?αβABOl
思考3:在二面角α-l-β中,直线m在平面β内,如果m⊥α,那么二面角α-l-β是直二面角吗?αβmla
思考4:根据上述分析,可以得到两个平面互相垂直的判定定理,用文字语言如何表述这个定理?如果一个平面经过另一个平面的垂线,则这两个平面垂直.
思考5:结合图形,两个平面垂直的判定定理用符号语言怎样表述?αβl
思考6:过一点P可以作多少个平面与平面α垂直?过一条直线l可以作多少个平面与平面α垂直?αPlαl
理论迁移例1如图,⊙O在平面α内,AB是⊙O的直径,PA⊥α,C为圆周上不同于A、B的任意一点,求证:平面PAC⊥平面PBC.PABCO
例2如图,四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,PA=AD,M为AB的中点,求证:平面PMC⊥平面PCD.PABCDMEF
例3在四面体ABCD中,已知AC⊥BD,BAC=∠CAD=45°,∠BAD=60°,求证:平面ABC⊥平面ACD.ABCDE
作业:P73习题2.3A组:3,6.P74习题2.3B组:1.