平面和平面垂直判定
加入VIP免费下载

平面和平面垂直判定

ID:1225803

大小:1.82 MB

页数:32页

时间:2022-08-16

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
平面与平面垂直的判定 课前自主预习 知识探究(一):二面角的有关概念思考1:直线上的一点将直线分割成两部分,每一部分都叫做射线.平面上的一条直线将平面分割成两部分,每一部分叫什么名称?半平面半平面射线射线 思考2:将一条直线沿直线上一点折起,得到的平面图形是一个角,将一个平面沿平面上的一条直线折起,得到的空间图形称为二面角,你能画一个二面角的直观图吗? 思考3:在平面几何中,我们把角定义为“从一点出发的两条射线所组成的图形叫做角”,按照这种定义方式,二面角的定义如何?从一条直线出发的两个半平面所组成的图形叫做二面角 思考4:下列两个二面角在摆放上有什么不同?lαβαβl 思考5:一个二面角是由一条直线和两个半平面组成,其中直线l叫做二面角的棱,两个半平面α、β都叫做二面角的面,二面角通常记作“二面角α-l-β”.那么两个相交平面共组成几个二面角?lαβ棱面 知识探究(二):二面角的平面角思考1:把门打开,门和墙构成二面角;把书打开,相邻两页书也构成二面角.随着打开的程度不同,可得到不同的二面角,这些二面角的区别在哪里? 思考2:我们设想用一个平面角来反映二面角的两个半平面的相对倾斜度,那么平面角的顶点应选在何处?角的两边在如何分布?lαβ 思考3:在二面角α-l-β的棱上取一点O,过点O分别在二面角的两个面内任作两条射线OA,OB,能否用∠AOB来刻画二面角的张开程度?lαβOAB 思考4:在上图中如何调整OA、OB的位置,使∠AOB被二面角α-l-β唯一确定?这个角的大小是否与顶点O在棱上的位置有关?lαβOABlαβOAB 思考5:上面所作的角叫做二面角的平面角,你能给二面角的平面角下个定义吗?以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.lαβOAB 思考6:二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说二面角是多少度.平面角是直角的二面角叫做直二面角.当二面角的两个面重合时,二面角的大小为多少度?当二面角的两个面合成一个平面时,二面角的大小为多少度?一般地,二面角的平面角的取值范围如何? 思考7:如图,过二面角α-l-β一个面内一点A,作另一个面的垂线,垂足为B,过点B作棱的垂线,垂足为O,连结AO,则∠AOB是二面角的平面角吗?为什么?ABOlαβ 思考8:如图,平面γ垂直于二面角的棱l,分别与面α、β相交于OA、OB,则∠AOB是二面角的平面角吗?为什么?lAOBγαβ 知识探究(三):两个平面垂直的概念思考1:空间两条直线垂直是怎样定义的?直线与平面垂直是怎样定义的?思考2:什么叫直二面角?如果两个相交平面所成的四个二面角中,有一个是直二面角,那么其他三个二面角的大小如何? 思考3:如果两个相交平面所成的二面角是直二面角,则称这两个平面互相垂直.在你的周围或空间几何体中,有哪些实例反映出两个平面垂直? 思考4:在图形上,符号上怎样表示两个平面互相垂直?αβαβ αβ思考5:如果平面α⊥平面β,那么平面α内的任一条直线都与平面β垂直吗? 知识探究(四):两个平面垂直的判定思考1:根据定义判断两个平面是否垂直需要解决什么问题?思考2:如图,∠AOB为直二面角Α-l-β的平面角,那么直线AO与平面α的位置关系如何?αβABOl 思考3:在二面角α-l-β中,直线m在平面β内,如果m⊥α,那么二面角α-l-β是直二面角吗?αβmla 思考4:根据上述分析,可以得到两个平面互相垂直的判定定理,用文字语言如何表述这个定理?如果一个平面经过另一个平面的垂线,则这两个平面垂直. 思考5:结合图形,两个平面垂直的判定定理用符号语言怎样表述?αβl 思考6:过一点P可以作多少个平面与平面α垂直?过一条直线l可以作多少个平面与平面α垂直?αPlαl 思路方法技巧 例1在正方体ABCD-A1B1C1D1中,求二面角B1-AC-B大小的正切值.AA1BCDB1C1D1O 例2如图所示,河堤斜面与水平面所成二面角为,堤面上有一条直道CD,它与堤角的水平线AB的夹角为,沿这条直道从堤脚C向上行走10m到达E处,此时人升高了多少m?ABCDEOF 例3如图,⊙O在平面α内,AB是⊙O的直径,PA⊥α,C为圆周上不同于A、B的任意一点,求证:平面PAC⊥平面PBC.PABCO 例4如图,四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,PA=AD,M为AB的中点,求证:平面PMC⊥平面PCD.PABCDMEF 例5在四面体ABCD中,已知AC⊥BD,∠BAC=∠CAD=45°,∠BAD=60°,求证:平面ABC⊥平面ACD.ABCDE

10000+的老师在这里下载备课资料