2.3.2平面与平面垂直的判定
问题:直线与直线,直线与平面可以垂直,平面与平面是否存在垂直关系?如何认识两个平面垂直?我们从理论上作些探讨.
知识探究(一):两个平面垂直的概念思考1:空间两条直线垂直是怎样定义的?直线与平面垂直是怎样定义的?思考2:什么叫直二面角?如果两个相交平面所成的四个二面角中,有一个是直二面角,那么其他三个二面角的大小如何?3
思考3:如果两个相交平面所成的二面角是直二面角,则称这两个平面互相垂直.在你的周围或空间几何体中,有哪些实例反映出两个平面垂直?4
思考4:在图形上,符号上怎样表示两个平面互相垂直?αβαβ5
αβ思考5:如果平面α⊥平面β,那么平面α内的任一条直线都与平面β垂直吗?6
知识探究(二):两个平面垂直的判定思考1:根据定义判断两个平面是否垂直需要解决什么问题?思考2:如图,∠AOB为直二面角Α-l-β的平面角,那么直线AO与平面α的位置关系如何?αβABOl7
思考3:在二面角α-l-β中,直线m在平面β内,如果m⊥α,那么二面角α-l-β是直二面角吗?αβmla8
思考3、两个平面互相垂直观察:教室里的墙面所在平面与地面所在平面相交,它们所成的二面角及其度数.两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。两个平面互相垂直通过画成:直立平面的竖边画成与水平平面的横边垂直。平面α与β垂直,记作:α⊥β。两个平面互相垂直的画法及其表示:9
思考4:根据上述分析,可以得到两个平面互相垂直的判定定理,用文字语言如何表述这个定理?如果一个平面经过另一个平面的垂线,则这两个平面垂直.
思考4、两个平面垂直的判定判定两个平面互相垂直,除了定义外,还有下面的判定定理.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.αβlO注:这个定理简称“线面垂直,则面面垂直”下面我们来证明这个定理11
求证:α⊥β.分析:要证明两个平面互相垂直,只有根据两个平面互相垂直的定义,证明由它们组成的二面角是直二面角,因此必须作出它的一个平面角,并证明这个平面角是直角.如何作平面角呢?根据平面角的定义,可以作BE⊥CD,使∠ABE为二面角α-CD-β的平面角.
求证:α⊥β.证明:设a∩β=CD,则B∈CD.∴AB⊥CD.在平面β内过点B作直线BE⊥CD,则∠ABE是二面角α-CD-β的平面角,又AB⊥BE,即二面角α-CD-β是直二面角.∴α⊥β.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.αβCDABE
特别注意:两个平面垂直的判定定理,不仅是判定两个平面互相垂直的依据,而且是找出垂直于一个平面的另一个平面的依据.如:建筑工人在砌墙时,常用一端系有铅锤的线来检查所砌的墙面是否和水平面垂直,实际上,就是依据这个原理.另外,这个定理说明要证明面面垂直,实质上是转化为线面垂直来证明.
思考5:结合图形,两个平面垂直的判定定理用符号语言怎样表述?αβl
思考6:过一点P可以作多少个平面与平面α垂直?过一条直线l可以作多少个平面与平面α垂直?αPlαl16
应用举例,强化所学例1:如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周一不同于A,B的任意一点,求证:平面PAC⊥平面PBCABOCP证明:设⊙O所在平面为α,由已知条件,有PA⊥α,BC在α内,所以,PA⊥BC,因为,点C是不同于A,B的任意一点,AB为⊙O的直径,所以,∠BCA=90°,即BC⊥CA又因为PA与AC是△PAC所在平面内的两条相交直线,所以,BC⊥平面PAC,又因为BC在平面PBC内,所以,平面PAC⊥平面PBC。探究:你还能发现哪些面互相垂直?17
例2如图,四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,PA=AD,M为AB的中点,求证:平面PMC⊥平面PCD.PABCDMEF
例3在四面体ABCD中,已知AC⊥BD,BAC=∠CAD=45°,∠BAD=60°,求证:平面ABC⊥平面ACD.ABCDE19
课堂诊断:1.如果平面α内有一条直线垂直于平面β内的一条直线,则α⊥β.()2.如果平面α内有一条直线垂直于平面β内的两条直线,则α⊥β.()3.如果平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥β.()4.若m⊥α,mβ,则α⊥β.()××√√5.二面角指的是( )A、从一条直线出发的两个半平面所夹的角度。B、从一条直线出发的两个半平面所组成的图形。C、两个平面相交时,两个平面所夹的锐角。D、过棱上一点和棱垂直的二射线所成的角。B20
附:角与二面角之间的关系角图形构成表示法•O顶点边边AB二面角从平面内一点出发的两条射线所组成的图形.从空间一条直线出发的两个半平面所组成的图形.定义射线点射线半平面—棱—半平面AOB二面角-a--AB-a棱面面AB
运用反馈,深化巩固1.指导完成课本P.69的探究问题2.指导完成课本P.69的练习小结归纳,整体认识1.比较角与二面角之间的关系2.二面角的度量;3.两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?想一想:怎样求二面角?