高中数学人教A必修2 第二章 点、直线、平面之间的位置关系 2.3.3直线与平面垂直的性质 课件
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2.3.3直线与平面垂直的性质2.3直线、平面垂直的判定及其性质第二章点、直线、平面之间的位置关系 复习回顾1、直线与平面垂直的定义2、直线与平面垂直的判定 复习回顾,1、直线与平面垂直的定义一条直线和平面内的任何一条直线都垂直,我们就说这条直线和这个平面互相垂直.2、直线与平面垂直的判定如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 1.利用判定定理我们证明了一个重要的结论,也请一个同学叙述一下.如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.2.请将上述命题用数学符号表示出来.若a∥b,a⊥α,则b⊥α.这个例题可以当作直线和平面垂直的又一个判定定理。现在请同学们交换这个定理的题设和结论,写出新的命题.若a⊥α,b⊥α,则a∥b.下面就让我们看看这个命题是否正确? 思考如图,已知直线a,b和平面α,如果a⊥α,b⊥α那么,直线a,b一定平行吗? 研探新知:请同学们写出已知、求证并结合题意画出图形.已知:a⊥α, b⊥α求证:a∥b.分析:a、b是空间中的两条直线,要证明它们互相平行,一般先证明它们共面,然后转化为平面几何中的平行判定问题,但这个命题的条件比较简单,想说明a、b共面就很困难了,更何况还要证明平行.我们能否从另一个角度来证明,比如,a、b不平行会有什么矛盾?这就是我们提到过的反证法.问:你知道用反证法证明命题的一般步骤吗?答:否定结论→推出矛盾→肯定结论 引导:第一步,我们做一个反面的假设,假定b与a不平行,现在应该要推出矛盾,从已知条件中的垂直关系,让我们想起例题1,在这个例题的已知条件中,平面有一条垂线,垂线有一条平行线,因此需要添加一条辅助线.层层推进,得出证明过程如下:证明:假定b与a不平行设b∩α=O,b′是经过点O与直线a平行的直线,∵ a∥b′,a⊥α,∴b′⊥α.所以,经过同一点O的两条直线b,b′都垂直于平面α。显然这是不可能的.因此,a∥b. 由此,我们得到:直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.指出:判定两条直线平行的方法很多,直线与平面垂直的性质定理告诉我们,可以由两条直线与一个平面垂直判定两条直线平行。直线与平面垂直的性质定理揭示了“平行”与“垂直”之间的内在联系。学习了直线与平面垂直的判定定理和性质定理,我们再来看看点到平面的距离的定义:从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.· 例题分析,巩固新知:例1:设直线a,b分别在正方体中两个不同的平面内,欲使a//b,a,b应满足什么条件?分析:结合两直线平行的判定定理,考虑a,b满足的条件。解:a,b满足下面条件中的任何一个,都能使a∥b,(1)a,b同垂直于正方体一个面;(2)a,b分别在正方体两个相对的面内且共面;(3)a,b平行于同一条棱;(4)如图,E,F,G,H分别为B'C’,CC’,AA’,AD的中点,EF所在的直线为a,GH所在直线为b,等等。 三垂线定理在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直PAOa PAOa三垂线定理的逆定理在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线在平面内的射影垂直 EABCD 巩固深化、发展思维思考:已知平面α、β和直线a,若α⊥β,a⊥β,则直线a与平面α具有什么位置关系?归纳小结:本节课,我们学习了直线和平面垂直的性质定理,以及点到平面的距离的定义.定理的证明用到反证法,证明几何问题常规的方法有两种:直接证法和间接证法,直接证法常依据定义、定理、公理,并适当引用平面几何的知识;用直接法证明比较困难时,我们可以考虑间接证法,反证法就是一种间接证法.

10000+的老师在这里下载备课资料