人民教育出版社高中必修2畅言教育2.3.3直线与平面垂直的性质一、选择题1.如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是( )A.D1O∥平面A1BC1B.MO⊥平面A1BC1C.异面直线BC1与AC所成的角等于60°D.二面角M-AC-B等于90°二、填空题2.如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是________(填序号).①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD与底面ABC所成的角为45°.三、解答题3.如图,△ABC为正三角形,EC⊥平面ABC,DB⊥平面ABC,CE=CA=2BD,M是EA的中点,N是EC的中点,求证:平面DMN∥平面ABC.用心用情服务教育5
人民教育出版社高中必修2畅言教育4.如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M,N分别是A1B,B1C1的中点.(1)求证:MN⊥平面A1BC;(2)求直线BC1和平面A1BC所成的角的大小.5.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.(1)求证:平面EFG⊥平面PDC;(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.用心用情服务教育5
人民教育出版社高中必修2畅言教育答案和解析一、选择题1. D【解析】对于选项A,连接B1D1,BO,交A1C1于E,则四边形D1OBE为平行四边形,所以D1O∥BE,因为D1O⊄平面A1BC1,BE⊂平面A1BC1,所以D1O∥平面A1BC1,故正确;对于选项B,连接B1D,因为O为底面ABCD的中心,M为棱BB1的中点,所以MO∥B1D,易证B1D⊥平面A1BC1,所以MO⊥平面A1BC1,故正确;对于选项C,因为AC∥A1C1,所以∠A1C1B为异面直线BC1与AC所成的角,因为△A1C1B为等边三角形,所以∠A1C1B=60°,故正确;对于选项D,因为BO⊥AC,MO⊥AC,所以∠MOB为二面角M-AC-B的平面角,显然不等于90°,故不正确.综上知,选D.二、填空题2.②④【解析】由于AD与AB不垂直,因此得不到PB⊥AD,①不正确;由PA⊥AB,AE⊥AB,PA∩AE=A,得AB⊥平面PAE,因为AB⊂平面PAB,所以平面PAB⊥平面PAE,②正确;延长BC,EA,两者相交,因此BC与平面PAE相交,③不正确;由于PA⊥平面ABC,所以∠PDA就是直线PD与平面ABC所成的角,由PA=2AB,AD=2AB,得PA=AD,所以∠PDA=45°,④正确.三、解答题3.证明 ∵M、N分别是EA与EC的中点,∴MN∥AC,又∵AC⊂平面ABC,MN⊄平面ABC,∴MN∥平面ABC,∵DB⊥平面ABC,EC⊥平面ABC,∴BD∥EC,四边形BDEC为直角梯形,∵N为EC中点,EC=2BD,∴NC綊BD,∴四边形BCND为矩形,∴DN∥BC,又∵DN⊄平面ABC,BC⊂平面ABC,∴DN∥平面ABC,又∵MN∩DN=N,∴平面DMN∥平面ABC.4.用心用情服务教育5
人民教育出版社高中必修2畅言教育(1)证明 如图所示,由已知BC⊥AC,BC⊥CC1,得BC⊥平面ACC1A1.连接AC1,则BC⊥AC1.由已知,可知侧面ACC1A1是正方形,所以A1C⊥AC1.又BC∩A1C=C,所以AC1⊥平面A1BC.因为侧面ABB1A1是正方形,M是A1B的中点,连接AB1,则点M是AB1的中点.又点N是B1C1的中点,则MN是△AB1C1的中位线,所以MN∥AC1.故MN⊥平面A1BC.(2)解 如图所示,因为AC1⊥平面A1BC,设AC1与A1C相交于点D,连接BD,则∠C1BD为直线BC1和平面A1BC所成的角.设AC=BC=CC1=a,则C1D=a,BC1=a.在Rt△BDC1中,sin∠C1BD==,所以∠C1BD=30°,故直线BC1和平面A1BC所成的角为30°.5.(1)证明:因为MA⊥平面ABCD,PD∥MA.所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,所以BC⊥平面PDC.在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,所以GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.(2)因为PD⊥平面ABCD,四边形ABCD为正方形,不妨设MA=1,则PD=AD=2,所以VP-ABCD=S正方形ABCD·PD=.由题意易知DA⊥平面MAB,且PD∥MA,用心用情服务教育5
人民教育出版社高中必修2畅言教育所以DA即为点P到平面MAB的距离,所以VP-MAB=××1×2×2=.所以VP-MAB∶VP-ABCD=1∶4.用心用情服务教育5