直线与平面,平面与平面垂直的性质
问题提出1.直线与平面垂直的定义是什么?如何判定直线与平面垂直?2.直线与平面垂直的判定定理,解决了直线与平面垂直的条件问题;反之,在直线与平面垂直的条件下,能得到哪些结论?如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直。如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。
知识探究(一)直线与平面垂直的性质定理思考1:如图,长方体ABCD—A1B1C1D1中,棱AA1,BB1,CC1,DD1所在直线与底面ABCD的位置关系如何?它们彼此之间具有什么位置关系?AA1BCDB1C1D1
根据上述分析,得到一个什么结论?定理垂直于同一个平面的两条直线平行上述定理通常叫做直线与平面垂直的性质定理.用符号语言可表述为:.
问题提出1.平面与平面垂直的定义是什么?如何判定平面与平面垂直?2.平面与平面垂直的判定定理,解决了两个平面垂直的条件问题;反之,在平面与平面垂直的条件下,能得到哪些结论?二面角为直二面角如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。符号表示:
知识探究(一)平面与平面垂直的性质定理思考1:如果平面α与平面β互相垂直,直线l在平面α内,那么直线l与平面β的位置关系有哪几种可能?αβllαβlαβ
探究新知教室的黑板所在平面与地面是什么关系?你能在黑板上画一条直线与地面垂直吗?
知识探究(一)平面与平面垂直的性质定理黑板面地面
思考2:如图,长方体ABCD—A1B1C1D1中,平面A1ADD1与平面ABCD垂直,其交线为AD,直线A1A,D1D都在平面A1ADD1内,且都与交线AD垂直,这两条直线与平面ABCD垂直吗?AA1BCDB1C1D1
思考3:据上分析可得什么定理?试用文字语言表述之.定理若两个平面互相垂直,则在一个平面内垂直交线的直线与另一个平面垂直.αβlm
上述定理通常叫做两平面垂直的性质定理,结合下图,如何用符号语言描述这个定理?该定理在实际应用中有何理论作用?αβlm
知识探究(二)平面与平面垂直的性质探究思考1:若α⊥β,过平面α内一点A作平面β的垂线,垂足为B,那么点B在什么位置?说明你的理由.BαβA
思考2:上述分析表明:如果两个平面互相垂直,那么经过一个平面内一点且垂直于另一个平面的直线,必在这个平面内.该性质在实际应用中有何理论作用?BαβA作直线垂直于平面的时候,就是作直线与交线垂直。
思考3:对于三个平面α、β、γ,如果α⊥γ,β⊥γ,,那么直线l与平面γ的位置关系如何?为什么?αβγlab
思考4:上述结论如何用文字语言表述?该性质在实际应用中有何理论作用?如果两个相交平面都垂直于另一个平面,那么这两个平面的交线垂直于这个平面.αβγl
理论迁移例1如图,已知α⊥β,l⊥β,,试判断直线l与平面α的位置关系,并说明理由.αβlma