直线、平面垂直的性质
课前自主预习
知识探究(一)直线与平面垂直的性质定理思考1:如图,长方体ABCD—A1B1C1D1中,棱AA1,BB1,CC1,DD1所在直线与底面ABCD的位置关系如何?它们彼此之间具有什么位置关系?AA1BCDB1C1D1
思考2:如果直线a,b都垂直于同一条直线l,那么直线a,b的位置关系如何?ablablabl
思考3:一个平面的垂线有多少条?这些直线彼此之间具有什么位置关系?思考4:如果直线a,b都垂直于平面α,由观察可知a//b,从理论上如何证明这个结论?cOabα
思考5:根据上述分析,得到一个什么结论?定理垂直于同一个平面的两条直线平行思考6:上述定理通常叫做直线与平面垂直的性质定理.用符号语言可表述为:.该定理有什么功能作用?
思考1:设a,b为直线,α为平面,若a⊥α,b//a,则b与α的位置关系如何?为什么?abα知识探究(二)直线与平面垂直的性质探究
思考2:设a,b为直线,α为平面,若a⊥α,b//α,则a与b的位置关系如何?为什么?abαl
思考3:设l为直线,α,β为平面,若l⊥α,α//β,则l与β的位置关系如何?为什么?βlαab
思考4:设l为直线,α、β为平面,若l⊥α,l⊥β,则平面α、β的位置关系如何?为什么?βlα
知识探究(三)平面与平面垂直的性质定理思考1:如果平面α与平面β互相垂直,直线l在平面α内,那么直线l与平面β的位置关系有哪几种可能?αβllαβlαβ
思考2:黑板所在平面与地面所在平面垂直,在黑板上是否存在直线与地面垂直?若存在,怎样画线?αβ
思考3:如图,长方体ABCD—A1B1C1D1中,平面A1ADD1与平面ABCD垂直,其交线为AD,直线A1A,D1D都在平面A1ADD1内,且都与交线AD垂直,这两条直线与平面ABCD垂直吗?AA1BCDB1C1D1
思考4:一般地,,垂足为B,那么直线AB与平面的位置关系如何?为什么?αβABDCE
思考5:据上分析可得什么定理?试用文字语言表述之.定理若两个平面互相垂直,则在一个平面内垂直交线的直线与另一个平面垂直.αβABDC
思考6:上述定理通常叫做两平面垂直的性质定理,结合下图,如何用符号语言描述这个定理?该定理在实际应用中有何理论作用?αβlm
知识探究(四)平面与平面垂直的性质探究思考1:若α⊥β,过平面α内一点A作平面β的垂线,垂足为B,那么点B在什么位置?说明你的理由.BαβA
思考2:上述分析表明:如果两个平面互相垂直,那么经过一个平面内一点且垂直于另一个平面的直线,必在这个平面内.该性质在实际应用中有何理论作用?BαβA
思考3:对于三个平面α、β、γ,如果α⊥γ,β⊥γ,,那么直线l与平面γ的位置关系如何?为什么?αβγlab
思考4:上述结论如何用文字语言表述?该性质在实际应用中有何理论作用?如果两个相交平面都垂直于另一个平面,那么这两个平面的交线垂直于这个平面.αβγl
思路方法技巧
例1如图,已知于点A,于点B,求证:.ABCαβla
例2如图,已知求证:αaABbβl
(2)若,求证:MN面PCD例3如图,已知矩形ABCD所在平面,M、N分别是AB、PC的中点求证:(1)PABCDMNE
例4如图,已知α⊥β,l⊥β,,试判断直线l与平面α的位置关系,并说明理由.αβlma
例5如图,四棱锥P-ABCD的底面是矩形,AB=2,,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD.(1)证明:侧面PAB⊥侧面PBC;(2)求侧棱PC与底面ABCD所成的角.PABCDE