2.3.3直线与平面垂直的性质
异面直线的夹角
求直线BA1和CC1所成角的度数。(1)找(2)求∠A1BB1即为异面直线A1B和CC1的夹角
OPAα关键:过斜线上一点作平面的垂线线面所成角斜线斜足线面所成角(锐角∠PAO)射影
已知:SB=SC=6,AB=AC=3,SA=(1)求证SA⊥平面ABC(2)求SB和平面ABC的夹角(1)找(2)求∠SBA即为直线SA和平面ABC的夹角AB为SB在平面ABC内的射影
二面角∠AOB即为二面角α-AB-β的平面角的平面角
P82A7(1)找(2)求∠VDC即为二面角V—AB—C的平面角
求直线BA1和CC1所成角的度数。(1)找(2)求∠A1BB1即为异面直线A1B和CC1的夹角
已知:SB=SC=6,AB=AC=3,SA=(1)求证SA⊥平面ABC(2)求SB和平面ABC的夹角(1)找(2)求∠SBA即为直线SA和平面ABC的夹角AB为SB在平面ABC内的射影
P82A7(1)找(2)求∠VDC即为二面角V—AB—C的平面角
线面垂直的性质
线面垂直性质定理:垂直于同一个平面的两条直线平行
平行于同一条直线的两条直线平行平面中空间中√√
垂直于同一条直线的两条直线平行平面中空间中√╳
两个角的两边分别对应平行,那么这两个角相等或互补。平面中空间中√√
P67A1
P67A1
作业:A:小结B:P82B1C.总结三种角预习:2.3.4节