高中数学人教A版必修2 第二章 点、直线、平面之间的位置关系 2.3.4 平面与平面垂直的性质 学案(含解析)
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2.3.3&2.3.4 直线与平面、平面与平面垂直的性质第一课时 直线与平面、平面与平面垂直的性质直线与平面垂直的性质[提出问题]世界上的高楼大厦太多了:中国上海中心大厦632米,天津高银117大厦621米,位于深圳的平安国际金融大厦600米(如右图).问题1:上海中心大厦外墙的每列玻璃形成的直线与地面有何位置关系?提示:垂直.问题2:每列玻璃形成的直线是什么位置关系?提示:平行.[导入新知]直线与平面垂直的性质定理(1)文字语言:垂直于同一个平面的两条直线平行.(2)图形语言:(3)符号语言:⇒a∥b.(4)作用:①线面垂直⇒线线平行;②作平行线.[化解疑难]对于线面垂直的性质定理的理解(1)直线与平面垂直的性质定理给出了判定两条直线平行的另一种方法.(2)定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系转化的依据.平面与平面垂直的性质[提出问题]教室内的黑板所在的平面与地面所在的平面垂直. 问题1:在黑板上任意画一条线与地面垂直吗?提示:不一定,也可能平行、相交(不垂直).问题2:怎样画才能保证所画直线与地面垂直?提示:只要保证所画的线与两面的交线垂直即可.[导入新知]平面与平面垂直的性质定理(1)文字语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(2)图形语言:(3)符号语言:⇒a⊥β.(4)作用:①面面垂直⇒线面垂直;②作面的垂线.[化解疑难]对面面垂直的性质定理的理解(1)定理成立的条件有三个:①两个平面互相垂直;②直线在其中一个平面内;③直线与两平面的交线垂直.(2)定理的实质是由面面垂直得线面垂直,故可用来证明线面垂直.(3)已知面面垂直时,可以利用此定理转化为线面垂直,再转化为线线垂直.线面垂直性质定理的应用[例1] 如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点. 求证:平面BCE⊥平面CDE.[解] 证明:取CE的中点G,连接FG,BG,AF.∵F为CD的中点,∴GF∥DE,且GF=DE.∵AB⊥平面ACD,DE⊥平面ACD,∴AB∥DE.则GF∥AB.又∵AB=DE,∴GF=AB.则四边形GFAB为平行四边形.于是AF∥BG.∵△ACD为等边三角形,F为CD的中点,∴AF⊥CD.∵DE⊥平面ACD,AF⊂平面ACD,∴DE⊥AF.又∵CD∩DE=D,CD,DE⊂平面CDE,∴AF⊥平面CDE.∵BG∥AF,∴BG⊥平面CDE.∵BG⊂平面BCE,∴平面BCE⊥平面CDE.[类题通法]1.此类问题是证明两个平面垂直比较难的问题,证明时要综合题目中的条件,利用条件和已知定理来证,或从结论出发逆推分析.2.若已知一条直线和某个平面垂直,证明这条直线和另一条直线平行,可考虑利用线面垂直的性质定理,证明另一条直线和这个平面垂直,证明时注意利用正方形、平行四边形及三角形中位线的有关性质.[活学活用]如图,在四棱锥PABCD中,底面ABCD为菱形,PB⊥平面ABCD.(1)若AC=6,BD=8,PB=3,求三棱锥APBC的体积;(2)若点E是DP的中点,证明:BD⊥平面ACE.解:(1)∵四边形ABCD为菱形,∴BD与AC相互垂直平分,∴底面ABCD的面积S菱形ABCD=×6×8=24,∴S△ABC=S菱形ABCD=12.又PB⊥平面ABCD,且PB=3,∴三棱锥APBC的体积VAPBC=VPABC=×PB×S△ABC=12. (2)证明:如图,设BD与AC相交于点O,连接OE,∵O为BD的中点,E是DP的中点,∴OE∥PB.又PB⊥平面ABCD,∴OE⊥平面ABCD.∵BD⊂平面ABCD,∴OE⊥BD,由(1)知AC⊥BD,又AC∩OE=O,∴BD⊥平面ACE.面面垂直的性质的应用[例2] 如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°,且边长为a的菱形.侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)若G为AD边的中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB.[解] 证明:(1)连接PG,由题知△PAD为正三角形,G是AD的中点,则PG⊥AD.又∵平面PAD⊥平面ABCD,PG⊂平面PAD,∴PG⊥平面ABCD.∵BG⊂平面ABCD,∴PG⊥BG.又∵四边形ABCD是菱形,且∠DAB=60°,∴△ABD是正三角形.则BG⊥AD.又∵AD∩PG=G,且AD,PG⊂平面PAD,∴BG⊥平面PAD.(2)由(1)可知BG⊥AD,PG⊥AD.又∵BG,PG为平面PBG内两条相交直线,∴AD⊥平面PBG.∵PB⊂平面PBG,∴AD⊥PB.[类题通法] 证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理,本题已知面面垂直,故可考虑面面垂直的性质定理.利用面面垂直的性质定理,证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直;(2)直线必须在其中一个平面内;(3)直线必须垂直于它们的交线.[活学活用]如图,菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,∠ABE=60°,∠BAD=∠CDA=90°,点H是线段EF的中点.(1)求证:平面AHC⊥平面BCE;(2)求此几何体的体积.解:(1)证明:连接AE,在菱形ABEF中,因为∠ABE=60°,所以△AEF是等边三角形.又因为H是线段EF的中点,所以AH⊥EF,所以AH⊥AB.因为平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,所以AH⊥平面ABCD,所以AH⊥BC.在直角梯形ABCD中,AB=2AD=2CD=4,∠BAD=∠CDA=90°,得到AC=BC=2,从而AC2+BC2=AB2,所以AC⊥BC.又AH∩AC=A,所以BC⊥平面AHC.又BC⊂平面BCE,所以平面AHC⊥平面BCE.(2)连接FC,因为V=VEACB+VFADC+VCAEF,又易得S△ACB=4,S△ADC=2,S△AEF=4,所以V=VEACB+VFADC+VCAEF=(2×4+2×2+2×4)=.线线、线面、面面垂直的综合问题[例3] 已知:如图,平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.(1)求证:PA⊥平面ABC;(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.[解] 证明:(1)在平面ABC内任取一点D,作DF⊥AC于点F,作DG⊥AB于点G.∵平面PAC ⊥平面ABC,且交线为AC,∴DF⊥平面PAC.∵PA⊂平面PAC,∴DF⊥PA.同理可证,DG⊥PA.∵DG∩DF=D,∴PA⊥平面ABC.(2)连接BE并延长交PC于点H.∵E是△PBC的垂心,∴PC⊥BH.又∵AE是平面PBC的垂线,∴PC⊥AE.∵BH∩AE=E,∴PC⊥平面ABE,∴PC⊥AB.又∵PA⊥平面ABC,∴PA⊥AB.∵PA∩PC=P,∴AB⊥平面PAC.∴AB⊥AC,即△ABC是直角三角形.[类题通法]线线、线面、面面垂直关系的综合应用主要体现了转化思想.证明线面垂直常转化为线线垂直,证明面面垂直常转化为线面垂直.[活学活用]如图,在三棱锥PABC中,E,F分别为AC,BC的中点.(1)求证:EF∥平面PAB;(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求证:平面PEF⊥平面PBC.证明:(1)∵E,F分别为AC,BC的中点,∴EF∥AB.又EF⊄平面PAB,AB⊂平面PAB,∴EF∥平面PAB.(2)∵PA=PC,E为AC的中点,∴PE⊥AC.又∵平面PAC⊥平面ABC,∴PE⊥平面ABC,∴PE⊥BC.又∵F为BC的中点,∴EF∥AB.∵∠ABC=90°,∴BC⊥EF. ∵EF∩PE=E,∴BC⊥平面PEF.又∵BC⊂平面PBC,∴平面PBC⊥平面PEF.    [典例] 已知两个平面垂直,有下列命题:①一个平面内已知直线必垂直于另一个平面内的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的无数条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.其中正确命题的个数是(  )A.3   B.2    C.1    D.0[解析] 如图,在正方体ABCDA1B1C1D1中,对于①AD1⊂平面AA1D1D,BD⊂平面ABCD,AD1与BD是异面直线,所成角为60°,①错误;②正确.对于③,AD1⊂平面AA1D1D,AD1不垂直于平面ABCD;对于④,过平面AA1D1D内点D1作D1C.∵AD⊥平面D1DCC1,D1C⊂平面D1DCC1,∴AD⊥D1C.但D1C不垂直于平面ABCD,④错误.[答案] C[易错防范]对于④,很容易认为是正确的,其实与面面垂直的性质定理是不同的,“一个平面内垂直于交线的直线与另一个平面垂直”与“过一个平面内任意一点作交线的垂线,此垂线与另一个平面垂直”是不同的,关键是过点作的直线不一定在已知平面内.[成功破障]如果直线l,m与平面α,β,γ之间满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么(  )A.α⊥γ且l⊥m    B.α⊥γ且m∥β C.m∥β且l⊥mD.α∥β且α⊥γ答案:A[随堂即时演练]1.下列命题中错误的是(  )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β答案:D2.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是(  )A.若m⊂α,n⊂β,m∥n,则α∥βB.若n⊥α,n⊥β,m⊥β,则m⊥αC.若m∥α,n∥β,m⊥n,则α⊥βD.若α⊥β,n⊥β,m⊥n,则m⊥α答案:B3.若a,b表示直线(不重合),α表示平面,有下列说法:①a⊥α,b∥α⇒a⊥b;②a⊥α,a⊥b⇒b∥α;③a∥α,a⊥b⇒b⊥α;④a⊥α,b⊥α⇒a∥b.其中正确的是________(填序号).答案:①④4.平面α⊥平面β,α∩β=l,n⊂β,n⊥l,直线m⊥α,则直线m与n的位置关系是________.答案:平行5.如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1,求证:CF⊥平面BDE.证明:如图,设AC∩BD=G,连接EG,FG.由AB=易知CG=1,则EF=CG=CE.又EF∥CG,所以四边形CEFG为菱形,所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF,所以BD⊥CF. 又BD∩EG=G,所以CF⊥平面BDE.[课时达标检测]一、选择题1.若l,m,n表示不重合的直线,α表示平面,则下列说法中正确的个数为(  )①l∥m,m∥n,l⊥α⇒n⊥α;②l∥m,m⊥α,n⊥α⇒l∥n;③m⊥α,n⊂α⇒m⊥n.A.1   B.2    C.3    D.0答案:C2.如果直线a与平面α不垂直,那么平面α内与直线a垂直的直线有(  )A.0条B.1条C.无数条D.任意条答案:C3.(浙江高考)设l是直线,α,β是两个不同的平面(  )A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β答案:B4.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是(  )A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β答案:D5.如图,线段AB的两端在直二面角αlβ的两个面内,并与这两个面都成30°角,则异面直线AB与l所成的角是(  )A.30°B.45°C.60°D.75°答案:B二、填空题6.如图,已知平面α∩平面β=l,EA⊥α,垂足为A,EB⊥β,垂足为B,直线a⊂β,a⊥AB,则直线a与直线l的位置关系是________. 答案:平行7.如图,四面体PABC中,PA=PB=,平面PAB⊥平面ABC,∠ABC=90°,AC=8,BC=6,则PC=________.答案:78.如图,已知六棱锥PABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有______(把所有正确的序号都填上).答案:①④三、解答题9.如图,三棱锥PABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△PAC是直角三角形,∠PAC=90°,平面PAC⊥平面ABC.求证:平面PAB⊥平面PBC.证明:∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PA⊥AC,∴PA⊥平面ABC.又BC⊂平面ABC,∴PA⊥BC.又∵AB⊥BC,AB∩PA=A,AB⊂平面PAB,PA⊂平面PAB,∴BC⊥平面PAB.又BC⊂平面PBC,∴平面PAB⊥平面PBC.10.如图所示,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明:(1)在四棱锥PABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.而AE⊂平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC. 由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,∴PA⊥AB.又∵AB⊥AD且PA∩AD=A,∴AB⊥平面PAD,而PD⊂平面PAD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.

10000+的老师在这里下载备课资料