高中数学人教A版必修2 第二章 点、直线、平面之间的位置关系 2.3.3 直线与平面垂直的性质 练习(含解析)
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
直线与平面垂直的性质班级:姓名:_____________1.已知直线a,b和平面M,N,且a⊥M,则下列说法正确的是 (  )A.b∥M⇒b⊥a      B.b⊥a⇒b∥MC.N⊥M⇒a∥ND.a⊄N⇒M∩N≠∅【解析】选A.对于A,如图1所示:过直线b作平面N与平面M相交于直线l,由直线与平面平行的性质定理可知:b∥l,又因为a⊥M,l⊂M,所以a⊥l,所以b⊥a,A正确.选项B,C均少考虑了直线在面内的情况,分别如图2,3所示,均错误;对于D,用排除法,如图4所示,M∥N,D错误.2.已知m,n表示两条不同直线,α表示平面.下列说法正确的是 (  )A.若m∥α,n∥α,则m∥n  B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【解析】选B.对于A,若m∥α,n∥α,则m,n相交、平行或异面,不对;对于B,若m⊥α,n⊂α,则m⊥n,故B正确;对于C,若m⊥α,m⊥n,则n∥α或n⊂α,故C错;对于D,若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,D不正确.3.设m,n表示两条不同的直线,α,β表示两个不同的平面,则下列命题不正确的是 (  )A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥nD.m∥α,α∩β=n,则m∥n【解析】选D.A选项正确,两平面垂直于同一直线,两平面平行;B选项正确,两平行线中的一条垂直于某个平面,则另一条必垂直于这个平面;C选项正确,两直线垂直于同一平面,两直线平行;D选项错误,由线面平行的性质定理知,线平行于面,过线的面与已知面相交,则交线与已知直线平行,由于m和β的位置关系不确定,不能确定线线平行.4.(2016·吉安高一检测)如图所示,PO⊥平面ABC,BO⊥AC,在图中与AC垂直的直线有 (  )A.1条    B.2条    C.3条   D.4条 【解析】选D.因为PO⊥平面ABC,AC⊂平面ABC,所以PO⊥AC,又因为AC⊥BO,PO∩BO=O,所以AC⊥平面PBD,因此,平面PBD中的4条直线PB,PD,PO,BD都与AC垂直.5.如图,设平面α∩β=EF,AB⊥α,CD⊥α,垂足分别是B,D,如果增加一个条件,就能推出BD⊥EF,这个条件不可能是下面四个选项中的 (  )A.AC⊥βB.AC⊥EFC.AC与BD在β内的射影在同一条直线上D.AC与α,β所成的角相等【解析】选D.因为AB⊥α,CD⊥α,所以AB∥CD,所以A,B,C,D四点共面.选项A,B中的条件都能推出EF⊥平面ABDC,则EF⊥BD.选项C中,由于AC与BD在β内的射影在同一条直线上,所以显然有EF⊥BD.选项D中,若AC∥EF,则AC与α,β所成角也相等,但不能推出BD⊥EF.6.如图,在正方体ABCD-A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于 (  )A.ACB.BDC.A1DD.A1D1【解析】选B.在正方体ABCD-A1B1C1D1中,E是A1C1,B1D1的中点,设O是AC,BD的交点,则EO⊥平面ABCD,所以EO⊥BD,又CO⊥BD,CO∩EO=O,所以BD⊥面COE,所以BD⊥CE.7.正方体ABCD-A1B1C1D1中E为线段B1D1上的一个动点,则下列结论中错误的是 (  )A.AC⊥BEB.B1E∥平面ABCDC.三棱锥E-ABC的体积为定值 D.B1E⊥BC1【解析】选D.对于A,因为在正方体中,AC⊥BD,AC⊥DD1,BD∩DD1=D,所以AC⊥平面BB1D1D,因为BE⊂平面BB1D1D,所以AC⊥BE,所以A正确.对于B,因为B1D1∥平面ABCD,所以B1E∥平面ABCD成立,即B正确.对于C,三棱锥E-ABC的底面△ABC的面积为定值,锥体的高BB1为定值,所以锥体体积为定值,即C正确.对于D,因为D1C1⊥BC1,所以B1E⊥BC1错误.8.已知棱长为1的正方体ABCD-A1B1C1D1中,点E,F,M分别是AB,AD,AA1的中点,又P,Q分别在线段A1B1,A1D1上,且A1P=A1Q=x,0

10000+的老师在这里下载备课资料