2.3.4平面与平面垂直的性质整体设计教学分析空间中平面与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的性质定理具备以下两个特点:(1)它是立体几何中最难、最“高级”的定理.(2)它往往又是一个复杂问题的开端,即先由面面垂直转化为线面垂直,否则无法解决问题.因此,面面垂直的性质定理是立体几何中最重要的定理.三维目标1.探究平面与平面垂直的性质定理,进一步培养学生的空间想象能力.2.面面垂直的性质定理的应用,培养学生的推理能力.3.通过平面与平面垂直的性质定理的学习,培养学生转化的思想.重点难点教学重点:平面与平面垂直的性质定理.教学难点:平面与平面性质定理的应用.课时安排1课时教学过程复习(1)面面垂直的定义.如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.(2)面面垂直的判定定理.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.两个平面垂直的判定定理符号表述为:α⊥β.两个平面垂直的判定定理图形表述为:图1导入新课思路1.(情境导入)黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?思路2.(事例导入)如图2,长方体ABCD—A′B′C′D′中,平面A′ADD′与平面ABCD垂直,直线A′A垂直于其交线AD.平面A′ADD′内的直线A′A与平面ABCD垂直吗?图2推进新课新知探究
提出问题①如图3,若α⊥β,α∩β=CD,ABα,AB⊥CD,AB∩CD=B.请同学们讨论直线AB与平面β的位置关系.图3②用三种语言描述平面与平面垂直的性质定理,并给出证明.③设平面α⊥平面β,点P∈α,P∈a,a⊥β,请同学们讨论直线a与平面α的关系.④分析平面与平面垂直的性质定理的特点,讨论应用定理的难点.⑤总结应用面面垂直的性质定理的口诀.活动:问题①引导学生作图或借助模型探究得出直线AB与平面β的关系.问题②引导学生进行语言转换.问题③引导学生作图或借助模型探究得出直线a与平面α的关系.问题④引导学生回忆立体几何的核心,以及平面与平面垂直的性质定理的特点.问题⑤引导学生找出应用平面与平面垂直的性质定理的口诀.讨论结果:①通过学生作图或借助模型探究得出直线AB与平面β垂直,如图3.②两个平面垂直的性质定理用文字语言描述为:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一平面.两个平面垂直的性质定理用图形语言描述为:如图4.图4两个平面垂直的性质定理用符号语言描述为:AB⊥β.两个平面垂直的性质定理证明过程如下:图5如图5,已知α⊥β,α∩β=a,ABα,AB⊥a于B.求证:AB⊥β.证明:在平面β内作BE⊥CD垂足为B,则∠ABE就是二面角αCDβ的平面角.由α⊥β,可知AB⊥BE.又AB⊥CD,BE与CD是β内两条相交直线,∴AB⊥β.③问题③也是阐述面面垂直的性质,变为文字叙述为:求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.下面给出证明.如图6,已知α⊥β,P∈α,P∈a,a⊥β.求证:aα.
图6证明:设α∩β=c,过点P在平面α内作直线b⊥c,∵α⊥β,∴b⊥β.而a⊥β,P∈a,∵经过一点只能有一条直线与平面β垂直,∴直线a应与直线b重合.那么aα.利用“同一法”证明问题,主要是在按一般途径不易完成问题的情形下所采用的一种数学方法,这里要求做到两点.一是作出符合题意的直线b,不易想到,二是证明直线b和直线a重合,相对容易些.点P的位置由投影所给的图及证明过程可知,可以在交线上,也可以不在交线上.④我认为立体几何的核心是:直线与平面垂直,因为立体几何的几乎所有问题都是围绕它展开的,例如它不仅是线线垂直与面面垂直相互转化的桥梁,而且由它还可以转化为线线平行,即使作线面角和二面角的平面角也离不开它.两个平面垂直的性质定理的特点就是帮我们找平面的垂线,因此它是立体几何中最重要的定理.⑤应用面面垂直的性质定理口诀是:“见到面面垂直,立即在一个平面内作交线的垂线”.应用示例思路1例1如图7,已知α⊥β,a⊥β,aα,试判断直线a与平面α的位置关系.图7解:在α内作垂直于α与β交线的垂线b,∵α⊥β,∴b⊥β.∵a⊥β,∴a∥b.∵aα,∴a∥α.变式训练如图8,已知平面α交平面β于直线a.α、β同垂直于平面γ,又同平行于直线b.求证:(1)a⊥γ;(2)b⊥γ.图8图9证明:如图9,(1)设α∩γ=AB,β∩γ=AC.在γ内任取一点P并在γ内作直线PM⊥AB,PN⊥AC.∵γ⊥α,∴PM⊥α.而aα,∴PM⊥a.同理,PN⊥a.又PMγ,PNγ,∴a⊥γ.(2)在a上任取点Q,过b与Q作一平面交α于直线a1,交β于直线a2.∵b∥α,∴b∥a1.同理,b∥a2.∵a1、a2同过Q且平行于b,∴a1、a2重合.
又a1α,a2β,∴a1、a2都是α、β的交线,即都重合于a.∵b∥a1,∴b∥a.而a⊥γ,∴b⊥γ.点评:面面垂直的性质定理作用是把面面垂直转化为线面垂直,见到面面垂直首先考虑利用性质定理,其口诀是:“见到面面垂直,立即在一个平面内作交线的垂线”.例2如图10,四棱锥P—ABCD的底面是AB=2,BC=的矩形,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD.图10图11(1)证明侧面PAB⊥侧面PBC;(2)求侧棱PC与底面ABCD所成的角;(3)求直线AB与平面PCD的距离.(1)证明:在矩形ABCD中,BC⊥AB,又∵面PAB⊥底面ABCD,侧面PAB∩底面ABCD=AB,∴BC⊥侧面PAB.又∵BC侧面PBC,∴侧面PAB⊥侧面PBC.(2)解:如图11,取AB中点E,连接PE、CE,又∵△PAB是等边三角形,∴PE⊥AB.又∵侧面PAB⊥底面ABCD,∴PE⊥面ABCD.∴∠PCE为侧棱PC与底面ABCD所成角.PE=BA=,CE==,在Rt△PEC中,∠PCE=45°为所求.(3)解:在矩形ABCD中,AB∥CD,∵CD侧面PCD,AB侧面PCD,∴AB∥侧面PCD.取CD中点F,连接EF、PF,则EF⊥AB.又∵PE⊥AB,∴AB⊥平面PEF.又∵AB∥CD,∴CD⊥平面PEF.∴平面PCD⊥平面PEF.作EG⊥PF,垂足为G,则EG⊥平面PCD.在Rt△PEF中,EG=为所求.变式训练如图12,斜三棱柱ABC—A1B1C1的棱长都是a,侧棱与底面成60°角,侧面BCC1B1⊥面ABC.求平面AB1C1与底面ABC所成二面角的大小.图12活动:请同学考虑面BB1C1C⊥面ABC及棱长相等两个条件,师生共同完成表述过程,并作出相应辅助线.解:∵面ABC∥面A1B1C1,则面BB1C1C∩面ABC=BC,
面BB1C1C∩面A1B1C1=B1C1,∴BC∥B1C1,则B1C1∥面ABC.设所求两面交线为AE,即二面角的棱为AE,则B1C1∥AE,即BC∥AE.过C1作C1D⊥BC于D,∵面BB1C1C⊥面ABC,∴C1D⊥面ABC,C1D⊥BC.又∠C1CD=60°,CC1=a,故CD=,即D为BC的中点.又△ABC是等边三角形,∴BC⊥AD.那么有BC⊥面DAC1,即AE⊥面DAC1.故AE⊥AD,AE⊥AC1,∠C1AD就是所求二面角的平面角.∵C1D=a,AD=a,C1D⊥AD,故∠C1AD=45°.点评:利用平面与平面垂直的性质定理,找出平面的垂线是解决问题的关键.思路2例1如图13,把等腰直角三角形ABC沿斜边AB旋转至△ABD的位置,使CD=AC,图13(1)求证:平面ABD⊥平面ABC;(2)求二面角CBDA的余弦值.(1)证明:(证法一):由题设,知AD=CD=BD,作DO⊥平面ABC,O为垂足,则OA=OB=OC.∴O是△ABC的外心,即AB的中点.∴O∈AB,即O∈平面ABD.∴OD平面ABD.∴平面ABD⊥平面ABC.(证法二):取AB中点O,连接OD、OC,则有OD⊥AB,OC⊥AB,即∠COD是二面角CABD的平面角.设AC=a,则OC=OD=,又CD=AD=AC,∴CD=a.∴△COD是直角三角形,即∠COD=90°.∴二面角是直二面角,即平面ABD⊥平面ABC.(2)解:取BD的中点E,连接CE、OE、OC,∵△BCD为正三角形,∴CE⊥BD.又△BOD为等腰直角三角形,∴OE⊥BD.∴∠OEC为二面角CBDA的平面角.同(1)可证OC⊥平面ABD,∴OC⊥OE.∴△COE为直角三角形.设BC=a,则CE=a,OE=a,∴cos∠OEC=即为所求.变式训练如图14,在矩形ABCD中,AB=33,BC=3,沿对角线BD把△BCD折起,使C移到C′,且C′在面ABC内的射影O恰好落在AB上.
图14(1)求证:AC′⊥BC′;(2)求AB与平面BC′D所成的角的正弦值;(3)求二面角C′BDA的正切值.(1)证明:由题意,知C′O⊥面ABD,∵C′OABC′,∴面ABC′⊥面ABD.又∵AD⊥AB,面ABC′∩面ABD=AB,∴AD⊥面ABC′.∴AD⊥BC′.∵BC′⊥C′D,∴BC′⊥面AC′D.∴BC′⊥AC′.(2)解:∵BC′⊥面AC′D,BC′面BC′D,∴面AC′D⊥面BC′D.作AH⊥C′D于H,则AH⊥面BC′D,连接BH,则BH为AB在面BC′D上的射影,∴∠ABH为AB与面BC′D所成的角.又在Rt△AC′D中,C′D=33,AD=3,∴AC′=3.∴AH=.∴sin∠ABH=,即AB与平面BC′D所成角的正弦值为.(3)解:过O作OG⊥BD于G,连接C′G,则C′G⊥BD,则∠C′GO为二面角C′BDA的平面角.在Rt△AC′B中,C′O=,在Rt△BC′D中,C′G=.∴OG==.∴tan∠C′GO=,即二面角C′BDA的正切值为.点评:直线与平面垂直是立体几何的核心,它是证明垂直问题和求二面角的基础,因此利用平面与平面垂直的性质定理找出平面的垂线,就显得非常重要了.例2如图15,三棱柱ABC—A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°角,求二面角BB1CA的正弦值.图15活动:可以知道,平面ABC与平面BCC1B1垂直,故可由面面垂直的性质来寻找从一个半平面到另一个半平面的垂线.解:由直三棱柱性质得平面ABC⊥平面BCC1B1,过A作AN⊥平面BCC1B1,垂足为N,则AN⊥平面BCC1B1(AN即为我们要找的垂线),在平面BCB1内过N作NQ⊥棱B1C,垂足为Q,连接QA,则∠NQA即为二面角的平面角.∵AB1在平面ABC内的射影为AB,CA⊥AB,∴CA⊥B1A.AB=BB1=1,得AB1=.
∵直线B1C与平面ABC成30°角,∴∠B1CB=30°,B1C=2.在Rt△B1AC中,由勾股定理,得AC=.∴AQ=1.在Rt△BAC中,AB=1,AC=,得AN=.sin∠AQN==,即二面角BB1CA的正弦值为.变式训练如图16,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角PAMD的大小.图16图17(1)证明:如图17,取CD的中点E,连接PE、EM、EA,∵△PCD为正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°=.∵平面PCD⊥平面ABCD,∴PE⊥平面ABCD.∵四边形ABCD是矩形,∴△ADE、△ECM、△ABM均为直角三角形.由勾股定理可求得EM=,AM=,AE=3,∴EM2+AM2=AE2.∴AM⊥EM.又EM是PM在平面ABCD上的射影,∴∠AME=90°.∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二面角PAMD的平面角.∴tan∠PME==1.∴∠PME=45°.∴二面角PAMD为45°.知能训练课本本节练习.拓展提升(2007全国高考,理18)如图18,在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.(1)证明SO⊥平面ABC;(2)求二面角ASCB的余弦值.
图18图19(1)证明:如图19,由题设,知AB=AC=SB=SC=SA.连接OA,△ABC为等腰直角三角形,所以OA=OB=OC=SA,且AO⊥BC.又△SBC为等腰三角形,故SO⊥BC,且SO=SA.从而OA2+SO2=SA2.所以△SOA为直角三角形,SO⊥AO.又AO∩BC=O,所以SO⊥平面ABC.(2)解:如图19,取SC中点M,连接AM、OM,由(1),知SO=OC,SA=AC,得OM⊥SC,AM⊥SC.所以∠OMA为二面角ASCB的平面角.由AO⊥BC,AO⊥SO,SO∩BC=O,得AO⊥平面SBC.所以AO⊥OM.又AM=SA,故sin∠AMO=.所以二面角ASCB的余弦值为.课堂小结知识总结:利用面面垂直的性质定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.作业课本习题2.3B组3、4.设计感想线面关系是线线关系和面面关系的桥梁和纽带,尤其是线面垂直问题是立体几何的核心,一个立体几何问题能否解决往往取决于能否作出平面的垂线;面面垂直的性质定理恰好能解决这个问题,因此它是高考考查的重点,本节不仅选用了大量经典好题,还选用了大量的2007高考模拟题以及最新2007全国各地高考真题,相信能够帮助大家解决立体几何中的重点难点问题.
德育教育融入小学课堂教学的有效对策随着我国小学德育教育不断提档升级,在小学课堂教学中进行德育渗透,日益成为现代小学品德教育的重要目标与方向。在小学教育阶段,是学生形成自身道德体系的关键时期,利用小学课堂教学开展德育教育,可以实现小学生个人思想品格的形成与塑造。在小学课堂教学体系中,蕴含着大量的德育知识与德育教育资源,如何将德育教育与课堂教学有机融合,是现代德育教学探索的主要方向,同时也是我们日常教学的出发点和着力点。一、营造良好的课堂氛围,充分利用教学资源在小学教育阶段,课堂是培养和激发学生道德意识的重要载体和平台。在道德培养的过程中,最为重要的就是要打造新型民主课堂,让学生在课堂中准确找到自己的位置,明确自身在课堂以及生活中权利义务,强化提升个人道德意识,构建自身的认知体系。在小学教学课堂上,教师要向学生灌输道德意识,在向学生提出要求的过程当中,要构建平等的话语体系,与学生进行平等对话,共同探讨和研究问题,帮助学生在课堂上培养自己的道德思维和道德意识,将自己当成课堂一份子,关注和理解课堂以及生活中出现的道德问题。举例来说,在小学语文六年级上册中,有一篇課文为《文天祥》,在开展讲解过程中,教师可以有效融入爱国主义教育,并引申相关知识,提升学生道德水平,激发学生爱国热情。在语文课堂教学中融入相应的知识,可以减小学生对于单纯宣教的抵触情绪,提高德育教育效果。此外,在小学语文五年级上册中,有课文《我的战友邱少云》,可以利用教学契机,提升学生爱国主义精神。二、打造生活化课堂,引导学生形成道德意识在小学课堂教学当中,要有效培养和提升学生的道德意识,要从打造生活化课堂入手。在传统的小学德育教学过程当中,教学效果不够理想,很多学生对于德育教育都存在一定的抵触情绪,因为小学德育教学内容与现实生活明显存在着脱节的现象,学生对于课堂和教学内容缺乏认同感,无法深刻感知德育课程蕴含的道理与教学内容。对于此,要想利用课堂教学培养学生的道德意识,要从构建生活化课堂入手,让德育课程教学内容与小学生的日常生活紧密相连,提升其认知能力,进而通过理论宣导,引起学生的联想,提高学生的思维能力,培养学生主体思想与德育意识。在教学实践当中,小学教师要充分运用多样化教学素材,内化于心、外化于形,让学生深入课堂体系当中,提升对于课堂教学内容的接受程度,提升道德培养效果。举例来说,在小学语文所学内容当中,很多文章都是开展的德育教育的合适载体,比如说,在小学语文六年级上册中,有一篇名为《将相和》的课文,教师在讲解课文过程当中,不仅仅要讲解历史典故,更要结合现实生活,引导学生学习古人的气度与胸襟,培养自己高尚的人格。因此,在德育教育过程中,教师要将生活习惯与德育教学内容紧密结合起来,创设有效的教学情境,搭建现实生活与道德知识之间的有机桥梁,提升学生的领悟力和自我认知能力,最终构建和培养自身的道德意识,帮助学生早日成为一名思想品德合格的优秀公民。三、强化课堂实践环节,唤醒学生道德意识在传统的小学德育教学当中,存在的一个重要教学问题就是实践环节的缺失,这也是制约学生道德意识培养与提升的一个瓶颈。在开展德育课程教学过程当中,要培养学生的公民意识,要将教学内容有效延伸与拓展,要与日常生活实践相互衔接,开展丰富多样的实践活动,引导学生在实践活动中体验生活,强化自身道德意识,找准自身角色定位,明确自身的权利义务,在不同生活角色中进行转换,提高自身素养,成为一名合格的社会公民。在开展课堂教学过程中,二、能力提升5、12.30万精确到()A.千位11、某学生在进行体检时,量得身高约为1.60米,他在登记时写成1.6米,从近似值的意义上去理解,测量结果与登记数是否一致?为什么?四、中考链接12、(呼和浩特中考题)用四舍五入法,分别按要求对0.05049分别取近似值,其中错误的()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050(精确到0.001)参考答案夯实基础1、D2、B3、50从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。以前练习写字,大多是在印有田字格或米字格的练习本上进行。教材中田字格或米字格里的范字我都认真仿写,其难度较大。我写起来标准难以掌握,不是靠上了,就是靠下了;不是偏左,就是偏右。后来在老师的指导下,我练习写字时,一开始观察字的笔画偏旁在格子中的位置,做到心中有数,然后才进行仿写,并要求把字尽量写大,要写满格子。这样写的好处有两个:一是培养我读帖习惯,可以从整体布局上纠正我不能把字写在格子正确位置上的毛病;二是促使我习惯写大字,这样指关节、腕关节运动幅度大,能增强手指、手腕的灵活性,有利于他们写字水平的持续提高。这使我意识到,写字必须做到以下几点:一、提高对练字重要性的认识。写字不仅能培养我们认真、细心的良好习惯,勤奋、刻苦的精神,健康、高雅的情趣,还能促进自己的注意力、观察力、意志力、审美力的发展。二、能使我的写字姿势得到训练。握笔姿势和坐姿是否正确,不但会影响字的美观和书写的速度,而且会影响自己的视力和身体的正常发育。写字时随时提醒自己写字时要做到“三个一”(眼离书本一尺远,胸离书桌一拳远,手离笔尖一寸远)。有意识地注意纠正自己的姿势,并持之以恒。逐渐地,这样就能保持正确、良好的写字姿势。三、做好进行自我评价。及时进行自评可以增强自己的兴趣和积极性,找出自己的缺点。在自我评价后,要找爸爸妈妈进行检查和督导,让大人谈谈哪些字写得好,好在哪里;哪些字写得不好,为什么没有写好。和家长共同评价、交流写字积极性会更高。四、在家长的鼓励和表扬下认真练习。练字是需要长时间坚持的,有时会觉得进步很慢,因而想弃练字。这时,我们要知道自己的练习是有成绩的,字是有明显进步的。这样,就会体会到成就感,也就会坚持练下去。在老师的帮助下,自己的努力下我的写字水平也提高了许多。2017年春季学期七年级数学下册5.3平行线的性质同步测试卷解析版一、选择题1.下列命题正确的是()A.两直线与第三条直线相交,同位角相等B.两直线与第三条直线相交,内错角相等C.两直线平行,内错角相等D.两直线平行,同旁内角相等答案:C本题考查了平行线的性质根据平行线的性质依次判断即可。A、缺少两直线平行的前提,故本选项错误;B、缺少两直线平行的前提,故本选项错误;C、两直线平行,内错角相等,正确;D、两直线平行,同旁内角应该互补,故本选项错误;故选C.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=23°,则∠2的度数是( )一、填空题。1.在同一平面内,( )的两条直线叫做平行线;两条直线相交成( )时,这两条直线互相垂直。2.长方形的对边互相( ),邻边互相( )。3.( )和( )是特殊的平行四边形。4.下图中有( )个平行四边形,有( )个梯形。5.下面的每个图形中各有几组平行的线段。( )组 ( )组 ( )组 ( )组二、判断题。(正确的画“√”,错误的画“✕”)1.梯形只有一条高。( )2.不相交的两条直线叫做平行线。( )3.有一组对边平行的四边形叫做梯形。( )4.如果两条直线都与同一条直线垂直,那么这两条直线互相平行。( )5.伸缩门利用了平行四边形易变形的特性。( )6.平行四边形有2种不同的高。( )三、选择题。(在括号里填上正确答案的序号)1.两条直线相交形成的4个角可能都是( )。A.锐角B.钝角C.直角D.平角2.平行四边形、梯形的高都是( )。A.线段B.射线C.直线D.曲线3.有一个角是直角的平行四边形一定是( )。A.直角梯形B.长方形C.正方形D.等腰梯形4.下图中,AB与CD相交成直角,正确的表述是( )。A.AB是垂线B.CD是垂线C.AB和CD都是垂线D.CD是AB的垂线5.把一个平行四边形框架拉成一个长方形后,它的周长( )。A.不变B.变小C.变大D.不能确定6.下面的图形中,两个( )能拼成一个长方形。 A B C D四、英语字母的笔画中有些是垂直的,有些是平行的。将下面10个字母填入合适的位置。五、画一画。1.过点A画已知直线的垂线。2.画出下面各图形的高。3.下图是一个正方形的两条边,请你把另外两条边画出来。4.请你在下面的梯形中画一条线段,将梯形分成一个平行四边形和一个三角形。你能想到几种方法?说说你的画法。5.李村要修一条小路与公路连接,如何修最短,请你画出来。新课标第一网六、解决问题。1.一个平行四边形的一条边长24厘米,比它的邻边短2厘米,这个平行四边形的周长是多少分米?2.一个等腰梯形的周长是72厘米,腰是15厘米,上底是18厘米。它的下底是多少厘米?3.如下图,一个平行四边形纸板沿高剪开,分成两个梯形,这两个梯形的周长之和比原来平行四边形的周长多多少厘米?4.小刚用4个完全一样的长方形纸片拼成了一个边长是30厘米的正方形(如下图)。中间形成的空白部分也是一个正方形,它的边长是6厘米。(1)你知道小刚用的长方形纸片的周长是多少吗(2)每个长方形的长与宽各是多少厘米第五单元测试卷参考答案一、1.不相交 直角2.平行 垂直3.长方形 正方形4.3 35.2 1 2 3二、1.✕ 2.✕ 3.✕ 4.✕ 5.√ 6.√三、1.C 2.A 3.B 4.D 5.A 6.A四、五、1.略 2.略 3.略4.2种。方法一: 方法二:5.六、1.(24+2+24)×2=100(厘米)100厘米=10分米2.72-15×2-18=24(厘米)3.4×2=8(厘米)4.(1)30×2=60(厘米) 提示:一条长+一条宽=30厘米。(2)长:(30+6)÷2=18(厘米)