6.3.5 平面向量数量积的坐标表示知识点一 两向量的数量积与两向量垂直的坐标表示设向量a=(x1,y1),b=(x2,y2).知识点二 三个重要公式1.平面向量数量积的坐标表示主要解决的问题
向量的坐标表示和向量的坐标运算实现了向量运算的完全代数化,并将数与形紧密结合起来.本节主要应用有:(1)求两点间的距离(求向量的模).(2)求两向量的夹角.(3)证明两向量垂直.2.解决向量夹角问题的方法及注意事项(1)先利用平面向量的坐标表示求出这两个向量的数量积a·b以及|a||b|,再由cosθ=求出cosθ,也可由坐标表示cosθ=直接求出cosθ.由三角函数值cosθ求角θ时,应注意角θ的取值范围是0≤θ≤π.(2)由于0≤θ≤π,利用cosθ=来判断角θ时,要注意cosθ0也有两种情况:一是θ是锐角,二是θ=0.1.判一判(正确的打“√”,错误的打“×”)(1)向量的模等于向量坐标的平方和.( )(2)若a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0.( )(3)若两个非零向量的夹角θ满足cosθ0).
又∵a·b=10,∴λ+4λ=10,∴λ=2,∴a=(2,4).(2)∵a·c=2×2+(-1)×4=0,∴(a·c)b=0.[条件探究] 若将本例改为a与b反向,b=(1,2),a·b=-10,求:(1)向量a的坐标;(2)若c=(2,-1),求(a·c)b.解 (1)∵a与b反向,且b=(1,2),∴设a=λb(λ