【新教材】9.2.3总体集中趋势的估计(人教A版)1.结合实例,能用样本估计总体的集中趋势参数(众数、中位数、平均数).2.会求样本数据的众数、中位数、平均数.3.理解集中趋势参数的统计含义.1.数学运算:求样本数据的众数、中位数、平均数;2.数据分析:频率分布直方图中的众数、中位数、平均数.重点:求样本数据的众数、中位数、平均数.难点:求样本数据的众数、中位数、平均数.一、预习导入阅读课本203-207页,填写。
1.众数、中位数、平均数定义(1)众数:一组数据中重复出现次数的数.(2)中位数:把一组数据按的顺序排列,处在位置(或中间两个数的)的数叫做这组数据的中位数.(3)平均数:如果n个数x1,x2,…,xn,那么=(x1+x2+…+xn)叫做这n个数的平均数.2.频率分布直方图中的众数、中位数、平均数①在频率分布直方图中,众数是最高矩形中点的横坐标;②中位数左边和右边的直方图的面积应该相等;③平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.1.判断下列说法是否正确.(正确的打“√”,错误的打“×”)(1)改变一组数据中的一个数,则这些数据的平均数一定会改变.( )(2)改变一组数据中的一个数,则其中位数也一定会改变.( )(3)在频率分布直方图中,众数是最高矩形中点的横坐标.( )2.已知一组数据为20,30,40,50,50,60,70,80.其中平均数、中位数和众数的大小关系是( )A.平均数>中位数>众数B.平均数